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Theoretical study of the emergence of periodic
solutions for the inhibitory NNLIF neuron model with

synaptic delay.
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Abstract

Among other models aimed at understanding self-sustained oscillations in neural
networks, the NNLIF model with synaptic delay was developed almost twenty years
ago to model fast global oscillations in networks of weakly firing inhibitory neurons.
Periodic solutions were numerically observed in this model, but despite its intensive
study by researchers in PDEs and probability, there is up to now no analytical result
on this topic. In this article, we propose to approximate formally this solution by a
Gaussian wave whose periodic movement is described by an associate delay differen-
tial equation (DDE). We prove the existence of a periodic solution for this DDE and we
give a rigorous asymptotic result on the solution when the connectivity parameter b

goes to −∞. Lastly, we provide heuristic and numerical evidence of the validity of our
approximation.
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1 Introduction

Self-sustained oscillations in neural networks are key processes in the brain and
several studies proved their ubiquity ([2, 37, 20, 6] among other reviews). These
spontaneous (not elicited by external inputs), stable and periodic collective behaviours
play a pivotal role in vital processes like respiratory rhythmogenesis [1]. In many cases,
the activity arises from intrinsically oscillating neurons, but spontaneous periodic activity
can occur in networks where individual noisy excitable neurons fire sporadically. This
kind of collective behaviour is difficult to grasp without a self-contained mathematical
model and many PDE models were studied numerically or analytically: the time-elapsed
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Periodic solutions in the NNLIF model

model [32, 33, 30], the kinetic FitzHugh-Nagumo model [29], conductance models
[34, 35] , . . .

One of the most striking cases of spontaneous periodic activity is fast global oscilla-
tions (gamma frequency range, see [7]) in networks of slowly firing inhibitory neurons. A
milestone was reached on this topic when Brunel and Hakim proposed in [5] an approach
to simulate those fast global oscillations: the Nonlinear Noisy Leaky Integrate & Fire
(NNLIF1) neuron model.

They start from the classical Lapicque Integrate & Fire model [27]:

Cm
dV

dt
= −gL(V − VL) + I(t), (1.1)

where Cm is the capacitance of the membrane, gL the leak conductance and VL ' −70mV

the leak potential. The synaptic current is a stochastic process of the form

I(t) = JE

CE∑
i=1

∑
j∈N

δ(t− tiEj )− JI
CI∑
i=1

∑
j∈N

δ(t− tiIj ), (1.2)

where δ is the Dirac measure centred at 0, JE > 0 and JI > 0 the strengths of excitatory
and inhibitory synapses, CE ∈ N and CI ∈ N the numbers of excitatory and inhibitory
pre-synaptic neurons and tiEj , t

i
Ij

the random times of the jth discharge from the ith

pre-synaptic excitatory or inhibitory neuron.
When a neuron reaches the discharge potential VF ' −50mV , it emits an action

potential and is reset to VR ' −60mV < VF . This model being hard to study in this
form, many authors assume that discharges follow a Poisson law and do a diffusive
approximation for a large number of neurons [5, 4]. Denoting b = CEJE − CIJI and
σC

2 = (CEJE
2 + CIJI

2) and rescaling in order to have Cm = gL = 1, it yields the
stochastic differential equation

dV = (−V + VL + bν)dt+ σCdBt, V < VF , (1.3)

where Bt is a standard Brownian motion, with the jump process and discharge intensity

lim sup
t→t−0

V (t) = VF =⇒ lim inf
t→t+0

V (t) = VR and ν = νext +N(t− d).

The quantity N(t) is the flux of neurons crossing the firing potential VF at time t. The
parameter d ≥ 0 is the synaptic delay: the mean time it takes for a spike to go from one
neuron to another in the network.

The so-called NNLIF model is associated to the probability density of (1.3) and it
writes:

∂p

∂t
(v, t) +

∂

∂v
[(−v + bN(t− d))p(v, t)]− a∂

2p

∂v2
(v, t) = N(t)δ(v − VR), v ≤ VF , (1.4)

with firing rate

N(t) = −a∂p
∂v

(VF , t) ≥ 0, (1.5)

and initial and boundary conditions

p(v, 0) = p0(v) ≥ 0,

∫ VF

−∞
p0(v)dv = 1 and p(VF , t) = p(−∞, t) = 0. (1.6)

1In some articles, the first N stands for Network.
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The function p(·, t) represents the probability density of the electric potential of a

randomly chosen neuron at time t. The parameter a =
σ2
C

2 > 0 is the diffusion coefficient
and b is the connectivity parameter. If b is positive, the neural network is said to be
average-excitatory; if b is negative the network is said to be average-inhibitory.

Both problems (1.3) and (1.4) were intensively studied from a mathematical perspec-
tive. It was proved in [13] for d = 0 and in [10] for d > 0 that if the initial density p0 is
continuous on (−∞, VF ], C1 on (−∞, VR)∪ (VR, VF ] and satisfies some decay and compat-
ibility conditions, then there exists a unique strong solution p(v, t) which is continuous
on (−∞, VF ]× [0, T ∗) and C2,1 on ((−∞, VR)∪ (VR, VF ])× [0, T ∗), where T ∗ is the maximal
time of existence and satisfies

T ∗ = sup{ t ∈ (0,+∞] | N(t) < +∞}.

It was proved that when b 6 0 [13] or when d > 0 [10] the solution is global-in-time:
T ∗ = +∞. However, it was proved in [8] that if d = 0 and b > 0, there exists initial
conditions such that T ∗ < +∞ and lim supt→T∗ N(t) = +∞. If d = 0 and b > 0 is large
enough, then all solutions blow-up in finite time [36]. The article [8] also characterised
the stationary states of (1.4) and proved via an entropy method that all solutions converge
towards a unique stationary state in the linear case b = 0. This convergence result was
extended to small enough values of |b| in [14] (d = 0) and [10] (d > 0).

Similar results were obtained for the stochastic counterpart (1.3): a first study
of local-in-time solutions and a global solvability result when b is small enough were
provided in [17]. The article [18] extended the notion of solutions, allowing continuation
after a blow-up event. The article [28] studied further the link between strong solutions
of (1.4) and (1.3) in the linear case. A lot of authors focused on the stochastic version of
the model in the context of mathematical finance (see e.g. [24, 23, 31]) and some studies
were devoted to a modified version of the model with a random discharge mechanism
instead of the firing potential VF [15, 16].

The emergence of periodic solutions in NNLIF-type models is a crucial question
and, although it was numerically investigated there are up to our knowledge very few
theoretical results on this topic. Indeed, these complex dynamics can solely occur when
the strength |b| of the nonlinearity is sufficient. Such a strong nonlinearity is hard
to tackle mathematically. Within the scope of this article, we propose to bring new
theoretical insights in the case of very inhibitory networks, i.e. b � 0. Before getting
into the details of our methods and results, let us sum up what is already known on these
periodic solutions:

• in the classical NNLIF system without delay (d = 0), periodic solutions have never
been observed. Adding a refractory period [9] or coupling excitatory-inhibitory
systems [11, 12] does not suffice to make them appear;

• in the high connectivity regime (b > 0 large), it is proved in [10, Th. 5.4] that there
is no periodic solution neither with delay (d > 0) nor without delay (d = 0);

• in the excitatory case b > 0, periodic solutions were not observed when there is
a delay d > 0, but if there is a delay and a refractory period they appear [12, 26].
They were also observed when a random discharge mechanism (without delay) is
taken into account [9, 15, 16]. Periodic solutions for the random discharge model
(without delay) were recently constructed analytically in [16];

• in the inhibitory case b < 0 with delay d > 0, periodic solutions are observed as
soon as |b|, d are large enough (regardless of the presence of a refractory period),
[5, 12, 26].
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In this article, we put ourselves in the context of a very inhibitory network: b � 0

with a positive delay d > 0. Our strategy is to write the solution as a sum of a periodic
wave ϕ(v, t) plus a remainder term R(v, t):

p(v, t) = ϕ(v, t) +R(v, t), ϕ(v, t) = φ
(
v − c(t)

)
(1.7)

where the remainder term R(v, t) is expected to vanish in some sense when b → −∞.
This problem is strongly coupled since the periodic movement c(t) depends upon the
firing rate

N(t) = −a∂p
∂v

(VF , t) = −a∂ϕ
∂v

(VF , t)− a
∂R

∂v
(VF , t).

In order to make the problem tractable, we do a second approximation, which is more
involved: we assume that in the limit b→ −∞ we have bN(t) ' −ba∂vϕ(VF , t). It means
we have a new firing rate that depends only upon the periodic wave ϕ(v, t) = φ(v − c(t)).
As we will see in more details in Proposition 2.1, the new firing rate N(t) ' N (c(t))

then depends only on c(t) and the function c satisfies the autonomous Delay Differential
Equation (DDE):

c′(t) + c(t) = bN (c(t− d)), (1.8)

where the new firing rate is expressed as

N (c) =
1√
2πa

(
VF − c

)
e−

(VF−c)
2

2a . (1.9)

The properties of DDEs have been intensively studied and there are several monographs
reviewing results about this topic, for example [22] which is about functional differential
equations in general and [38] which focuses more on the applications of DDEs in the Life
Sciences. Numerous analytical and numerical examples in the literature show that large
enough delays naturally induce oscillations in DDEs modelling biological phenomena.

Implementing our strategy for the study of the PDE (1.4) requires to answer two
separate questions.

• The first one, which is the hardest and which we leave open, is to justify rigorously
these approximations in the limit b → −∞. Concerning the first approximation
(1.7), we provide a partial answer to this question by proving that if we assume
N(t)→ 0, then the remainder R goes to 0 in some sense. Our second approximation
(1.8) is much more involved: since bN(t) = −ba∂vϕ(VF , t)− ba∂vR(VF , t), proving
our method to be valid requires to prove that both R and b∂vR(VF , t) converge to 0
when b→ −∞ (i.e. R(v, t) = o(1) and ∂vR(VF , t) = o( 1

b )). This difficult question is
beyond the scope of our paper.

• The second one is to study theoretically the DDE (1.8). On the one hand, we prove
that there exists (b∗, d∗) ∈ R∗−×R∗+ such that if b < b∗, d > d∗ there exists a periodic
solution c(t) (see Theorem 3.1). On the other hand, we construct in appropriate
rescaled variables an explicit asymptotic profile P (t) towards which the solutions
converge when b → −∞ (see Theorem 4.1) This profile is periodic and gives us
a precise idea of the behaviour of the periodic solutions: they are projected very
fast away from VF (at a distance O((−b)CM ), for some CM ∈ (0, 1)), then they come
back at an exponential speed over a period of time in O(log(−b)), and so on back
and forth.

In order to prove that there are periodic solutions to equation (1.8), we follow the
method proposed in [21], which consists in applying Browder’s fixed-point theorem on
an ad hoc functional. Note that, as Brunel and Hakim guessed in their original article
[5], the apparition of fast global oscillations in an inhibitory network is likely to be a
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Hopf bifurcation. However, [5] suggests a bifurcation for some parameter value b and
our result indicates a bifurcation in d when b is negative and large enough. Note that
the periodic solutions of the random discharge NNLIF model constructed in [16] appear
through a Hopf bifurcation in b > 0 (and not in d, which does not appear in their version
of the model).

To carry out our study of the asymptotic profile P when the connectivity b goes to
−∞, we make a handy rescaling and then decompose the evolution of the solutions in
different phases (growth phase, decay phase, etc.). Then, we use b-dependent estimates
to prove convergence towards an explicit profile. Our numerical simulations indicate
that this asymptotic profile is a good approximation.

This article is organised as follows. In Section 2 we derive (heuristically) the DDE
(1.8) and we justify its relevance in a heuristic way. In Section 3, we use the method
of [21] to prove the existence of periodic solutions for equation (1.8). In Section 4, we
prove a result on the asymptotic profile of solutions of (1.8) when the parameter b goes
to −∞. Last, in Section 5 we propose a numerical study of the PDE, the DDE and the
links between them.

2 An associate delay differential equation

2.1 Formal derivation of the wave-type solution

Note first that we can rewrite (1.4) on the whole real line as follows:

∂p

∂t
+

∂

∂v

[
(−v + bN(t− d))p

]
− a∂

2p

∂v2
= δVRN(t)− δVFN(t), v ∈ R, t > 0,

p(−∞, t) = p(+∞, t) = 0, N(t) = −a∂p
∂v

(VF , t), t > 0,

p(v, 0) = p0(v) ≥ 0, v ∈ R,
∫ +∞

−∞
p0(v)dv = 1.

If p0 ≡ 0 on [VF ,+∞) then for all t > 0, p(·, t) ≡ 0 on [VF ,+∞).
As Lemma 2.2 below and numerical simulations in the literature indicate (see e.g.

[5] and Section 5 of this article), when b � 0 the firing rate N tends to be low. As a
consequence, the term (δVR−δVF )N(t) is of lesser importance in the equation. Hence, we
are looking for a solution composed of a periodic wave of unit mass ϕ(v, t) = φ

(
v − c(t)

)
defined on R plus a corrective term R(v, t) needed to account for the boundary and reset
conditions:

p(v, t) = φ
(
v − c(t)

)
+R(v, t), (2.1)

and it is sound to look for the wave-type periodic solution ϕ : (v, t) 7→ φ
(
v − c(t)

)
as a

solution of equation
∂ϕ

∂t
+

∂

∂v

[
(−v + bN(t− d))ϕ

]
− a∂

2ϕ

∂v2
= 0, v ∈ R, t > 0,

ϕ(−∞, t) = ϕ(+∞, t) = 0,
∫ +∞
−∞ ϕ(v, t)dv = 1.

(2.2)

Therefore, the remainder term R : (v, t) 7→ R(v, t) must be a solution of ∂R

∂t
+

∂

∂v

[
(−v + bN(t− d))R

]
− a∂

2R

∂v2
= δVRN(t)− δVFN(t), v ∈ R, t > 0,

R(−∞, t) = R(+∞, t) = 0, R(v, 0) = p0(v)− ϕ(v, 0), v ∈ R, t > 0.
(2.3)

Unfortunately, systems (2.2) and (2.3) are strongly coupled through the firing rate
associated to p(v, t):

N(t) = −a∂vϕ(VF , t)− a∂vR(VF , t).

We have the following result about solutions of (2.2):
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Proposition 2.1. Let φ : R→ R be the function defined by

φ(v) =
1√
2πa

e−
v2

2a .

Let c be a solution of

c′(t) + c(t) = bN(t− d). (2.4)

Then the function ϕ defined by ϕ(v, t) = φ(v − c(t)) is a solution of (2.2).

Proof. Replacing ϕ(v, t) = φ(v − c(t)) in (2.2), we get for all v ∈ R,

−φ(v − c(t))−
(
v + c′(t)− bN(t− d)

)
φ′(v − c(t))− aφ′′(v − c(t)) = 0.

By change of variable v 7→ v + c(t), it yields

−φ(v)−
(
v + c′(t) + c(t)− bN(t− d)

)
φ′(v)− aφ′′(v) = 0.

Assume that the function c satisfies c′(t)+c(t) = bN(t−d). Then, −φ(v)−vφ′(v)−aφ′′(v) =

0, that is to say −(vφ(v))′ = aφ′′(v). We integrate and apply boundary conditions:

φ′(v) = −v
a
φ(v).

The positive solutions of this equation are of the form φ(v) = Cge
− v22a , where Cg > 0 is

any given positive constant. Since∫ +∞

−∞
Cge

− v22a dv =

∫ +∞

−∞
ϕ(v, t)dv = 1,

we have Cg = (2πa)−
1
2 .

In order to make the problem autonomous and thus theoretically tractable, we make
a last and more involved assumption: that b∂vR(VF , t) ' 0 in an appropriate sense when
b→ −∞. Hence, we replace N(t) by the simpler firing rate

N (c(t)) = −a∂ϕ
∂v

(VF , t) (2.5)

in equation (2.4) and we obtain the autonomous DDE (1.8)–(1.9).

2.2 Partial results on the remainder term R

We will give here some partial results on the remainder term R(v, t) in the first
approximation (2.1). Note first that as the following lemma indicates, the stationary
firing rate vanishes when b tends to −∞.

Lemma 2.2. For all b 6 0, denote N b
∞ the firing rate of the unique stationary state of

(1.4) with connectivity parameter b. Then, the function b 7→ N b
∞ is increasing on (−∞, 0]

and

lim
b→−∞

N b
∞ = 0.

Proof. We know from [8] that when b 6 0 there exists a unique stationary state of (1.4)
and that it satisfies

1

N b
∞

=

∫ +∞

0

e−
s2

2

s
e
− bN

b
∞√
a
s
(
e
s
VF√
a − es

VR√
a

)
ds.
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Let us define two functions:

I : (b,N) 7→
∫ +∞

0

e−
s2

2

s
e
− bN√

a
s
(
e
s
VF√
a − es

VR√
a

)
ds and J : (b,N) 7→ I(b,N)− 1

N
.

For all b < 0, equation J(b,N) = 0 has a unique solution [8]. The function J is smooth on
(−∞, 0)× (0,+∞) and for all (b,N) ∈ (−∞, 0)× (0,+∞),

∂J

∂N
(b,N) = − b√

a
I(b,N) +

1

N2
> 0 and

∂J

∂b
(b,N) = − N√

a
I(b,N) < 0.

Hence, by the implicit functions theorem applied to equation J(b,N) = 0, the function
b 7→ N b

∞ has the following derivative:

b 7→ −

∂J

∂b
(b,N)

∂J

∂N
(b,N)

> 0.

The function b 7→ N b
∞ is thus increasing on (−∞, 0). Then, note that for all N > 0, the

function b 7→ I(b,N) is non-increasing and

lim
b→−∞

IN (b) = +∞.

Function b 7→ N b
∞ being continuous, bounded by 0 and increasing, it has a limit N∗∞ ≥ 0

when b goes to −∞. If we assume N∗∞ > 0, then

0 = lim
b→−∞

J(b,N∗∞) = lim
b→−∞

I(b,N∗∞)− 1

N∗∞
= +∞,

and we reached a contradiction. Thus, we must have limb→−∞N b
∞ = 0.

We now make the following guess:

Conjecture 2.3. Let (p0, N0) be an initial condition. For all ε > 0, there exists some time
T > 0 and some connectivity parameter b < 0 such that any solution (p,N) of (1.4) with
parameter b satisfies

∀t > T,

∫ t

0

es−tN(s)ds < ε.

With the previous lemma, this conjecture means that as b goes to −∞, N converges
towards 0 in some sense. If we assume that this conjecture holds, then the remainder
term R is asymptotically small when b goes to −∞. More precisely, this conjecture
implies:

Proposition 2.4. Assume that Conjecture 2.3 holds. Then, for all ε > 0, there exists
b < 0 and T > 0 such that for all t > T ,∫ t

0

es−t‖R(s)‖2L2ds < ε.

Proof. First, since the mass of p is conserved, we have∫ +∞

−∞
R(v, t)dv =

∫ +∞

−∞
p(v, t)dv −

∫ +∞

−∞
ϕ(v, t)dv = 1− 1 = 0.

We know that R is solution of

∂tR+ ∂v((−v + bN(t− d))R)− a∂vvR = δv=VRN(t)− δv=VFN(t). (2.6)
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Define

U(v, t) =

∫ v

−∞
R(w, t)dw.

We have U(±∞, t) = 0 and the equation satisfied by U is given by

∂tU + (−v + bN(t− d))∂vU − a∂vvU = 1(VR,VF )N(t).

Multiplying the above equation by U and integrating, we find that

d

dt
‖U‖2L2 ≤ −‖U‖2L2 − 2a‖R‖2L2 + 2N(t) ‖U‖L1(VR,VF ) .

We have

‖U‖L1(VR,VF ) =

∫ VF

VR

∣∣∣∣∫ v

−∞
R(w, t)dw

∣∣∣∣dv 6
∫ VF

VR

∫ v

−∞
|R(w, t)|dwdv

6
∫ VF

VR

∫ +∞

−∞

(
p(w, t) + ϕ(w, t)

)
dwdv 6 2(VF − VR). (2.7)

This implies that

d

dt
‖U‖2L2 ≤ −‖U‖2L2 − 2a‖R‖2L2 + 4(VF − VR)N(t).

Hence, we obtain that

2ae−t
∫ t

0

es‖R(s)‖2L2ds ≤ ‖U(0)‖2L2e−t + 4(VF − VR)e−t
∫ t

0

esN(s)ds− ‖U(t)‖2L2 .

Applying Conjecture 2.3, we choose T and |b| large enough in order to have

∀t > T ‖U(0)‖2L2e−t 6 aε and 4(VF − VR)e−t
∫ t

0

esN(s)ds 6 aε,

and thus, ∫ t

0

es−t‖R(s)‖2L2ds < ε.

2.3 Evolution of the mean and variance of the PDE solution

We can derive evolution equations for the moments of the solution p(v, t) of (1.4).
Indeed, for every test function φ ∈ C2((−∞, VF ]), assuming enough decay of p(v, t) at
−∞, we have

d

dt

∫ VF

−∞
p(v, t)φ(v)dv =

∫ VF

−∞

[(
− v + bN(t− d)

)
φ′(v) + aφ′′(v)

]
p(v, t)dv

+N(t)
(
φ(VR) − φ(VF )

)
. (2.8)

Hence, if we denote

m1(t) =

∫ VF

−∞
vp(v, t)dv, and m2(t) =

∫ VF

−∞
v2p(v, t)dv (2.9)

the first (mean) and second moment of the solution respectively, we have the following
equations:

m′1(t) +m1(t) = bN(t− d) + (VR − VF )N(t) (2.10)
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and
m′2(t) + 2m2(t) = 2a+ 2bN(t− d)m1(t) +N(t)(VR − VF )(VR + VF ). (2.11)

Then, the variance Var(t) = m2(t)−m1(t)2 of p(v, t) satisfies the equation

d

dt
Var(t) + 2 Var(t) = 2a+ (VF − VR)

(
2m1(t)− VR − VF

)
N(t). (2.12)

If we assume Conjecture 2.3 again, then we can prove that when b→ −∞, the first
moment m1(t) converges locally uniformly towards the solution c(t) of the ODE (2.4).

Proposition 2.5. Assume Conjecture 2.3. Let p(v, t) be a classical fast-decaying solution
of (1.4). Let m1(t) and c(t) be the solutions of (2.10) and (2.4) respectively. Then, for all
ε > 0, there exist b < 0 and T > 0 such that

∀t > T, |c(t)−m1(t)| < ε.

Proof. Denote w1(t) = c(t)−m1(t). Then w1 satisfies the equation

w′1(t) + w1(t) = (VF − VR)N(t).

Hence, we have

w1(t) = w1(0)e−t + (VF − VR)

∫ t

0

es−tN(s)ds,

and we get the result by applying Conjecture 2.3.

Remark 2.6. Unfortunately, assuming Conjecture 2.3 is not enough to prove straight-
forwardly that |Var(t) − a| → 0, because we need to control the nonlinear term (VF −
VR)

(
2m1(t) − VR − VF

)
N(t) uniformly in b. It should be possible with some work to

control the product m1(t)N(t) with Conjecture 2.3, because on the one hand when m1(t)

is large the solution is far from VF and N(t) is exponentially small, and on the other
hand when N(t) is large it means that the solution is concentrated near VF and m1(t)

will be small, or at least bounded.

3 Periodic solutions of the delay differential equation

Here we prove the existence of a periodic solution of

c′(t) + c(t) = bN (c(t− d)), (3.1)

where the function N (c) is given by

N (c) = (VF − c)e−
(VF−c)

2

2a ,

and b < 0, d ≥ 0, VF ≥ 0, a > 0 are parameters. We remove in this section the constant
Cg = (2πa)−

1
2 without loss of generality since the rescaling b̄ = b(2πa)−

1
2 allows us to

come back to the general case.

Theorem 3.1. Assume VF
2 ≥ a, then there exist b∗ < 0 and d∗ > 0 such that (3.1) has

a non-constant periodic solution c(t) for any b < b∗ and d > d∗. Moreover, given b < 0

there is a negative constant c0 such that for all d > d∗ and for all t > 0, c0 ≤ c(t) < 0.

We build upon the method of Hadeler and Tomiuk for a similar DDE [21], although
their results are not applicable for our case directly. The main idea is to find the periodic
solution as a non-ejective fixed-point of a functional F on an appropriate function space
and to prove that uninteresting fixed-point (the stationary states) are ejective. More
precisely, we recall the following definition and result.
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Definition 3.2 (Ejective fixed-point, [3]). Let E a Banach space and D a closed subset of
E. Let F : D → D a continuous map. A fixed-point x̄ of F is said to be ejective if there
exists a neighbourhood U ⊂ D of x̄ such that

∀x ∈ U \ {x̄}, ∃n ∈ N, Fn(x) /∈ U.

Theorem 3.3 (Browder’s fixed-point theorem, [3]). Let D be a closed, bounded and
convex subset of an infinite dimensional Banach space and let F : D → D a continuous
and compact map. Then F admits at least one fixed-point which is not ejective.

Let us describe the strategy of the proof of Theorem 3.1. We go through three
different forms of the problem: original equation (3.1), equivalent equation (3.4) and the
slightly modified equation (3.11).

• First we study the stationary solutions c∗ of (3.1).
• We change variables and recast (3.1) into (3.4). Then we study the corresponding

characteristic equation:
λ+ d = bdN ′(c∗)e−λ.

We find that bN ′(c∗) < −1 is a necessary condition to have unstable eigenvalues.
• We define a functional F whose solutions are either stationary or periodic solutions

of problem (3.11) which is very close to our renormalised problem (3.4).
• We prove that stationary solutions of (3.11) are ejective; hence, applying Browder’s

fixed-point theorem, F possess another fixed-point which happens to be a periodic
solution of (3.11). Last, we prove that this solution yields a non-trivial periodic
solution of (3.4) and equivalently of (3.1).

3.1 Stationary problem

Let us first state the existence of a stationary solution. In the following we consider
two cases

VF > 0 (Case 1) and VF = 0, b < −1 (Case 2).

Since (3.1) describes the solution from the PDE system (1.4) on (−∞, VF ], the solution of
(3.1) must be contained in (−∞, VF ). Thus, we are only looking for solutions c(t) < VF .

Theorem 3.4. There is a unique stationary solution c∗ ∈ (−∞,min(0, VF )) of (3.1) in
Cases 1 and 2. On the other hand, there is no stationary solution of (3.1) in (−∞, 0) in
the case of VF = 0 and −1 6 b < 0.

Proof. Define F (c, b) = c − bN (c), which is a smooth function of (c, b) in c < VF and
b < 0. We have limc→−∞ F (c, b) = −∞. Moreover, F (0, b) = −bN (0) > 0 in Case 1 while
F (0, b) = 0 and (∂F/∂c)(0, b) = 1 + b < 0 in Case 2. Hence there exists a zero of F (c, b)

– a stationary solution – denoted by c = c∗ < 0. On the other hand, let us consider the
case VF = 0 and −1 ≤ b ≤ 0 and assume that there is a stationary solution c < 0 of (3.1).
Then we have a contradiction because

1 = −b exp

(
− c

2

2a

)
< −b ≤ 1.

Next, uniqueness of stationary solutions c∗ of (3.1) follows from the following compu-
tation:

∂F

∂c
(c∗, b) = 1− bN ′(c∗) =

aVF − c∗(VF − c∗)2

a(VF − c∗)
> 0, (3.2)

where we calculate N ′(c∗) as

N ′(c∗) =
(VF − c∗)2 − a

a
exp

(
− (VF − c∗)2

2a

)
=
c∗
b

(
VF − c∗

a
− 1

VF − c∗

)
. (3.3)
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According to the implicit function theorem and due to (3.2), b 7→ c∗(b) is a smooth
function. Note that c∗(b) can be defined for b < 0 in Case 1, and b < −1 in Case 2,
respectively. Next, we study some properties of c∗(b).

Lemma 3.5. The function b 7→ c∗(b) satisfies c′∗(b) > 0, limb→−∞ c∗(b) = −∞ and
limb→−∞ c∗(b)/b = 0. Moreover, there exists b∗ < 0 such that bN ′(c∗(b)) < −1 for
any b < b∗.

Proof. In the proof we only consider Case 1 because we can prove the statement for
Case 2 by the same argument. It is obvious that limb→0 c∗(b) = 0. Then, assume that
there is a subsequence (bi)i∈N and c∞ ∈ (−∞, 0) such that bi → −∞ and c∗(bi) → c∞
as i → ∞. We have N (c∞) = 0, and then c∞ = VF > 0, which is a contradiction.
Hence, limb→−∞ c∗(b) = −∞. This fact and (3.3) imply c∗(b)/b = N (c∗(b)) → 0 and
bN ′(c∗(b))→ −∞ as b→ −∞.

Let F be the same function as in the previous proof. Since (∂F/∂b)(c, b) = −N (c) < 0

in c < VF and b < 0, we differentiate both sides of F (c∗(b), b) = 0 with respect to b and
obtain

c′∗(b) = −

∂F

∂b
(c∗(b), b)

∂F

∂c
(c∗(b), b)

> 0

because of (3.2).

We now set

c(t) = c∗ + x

(
t

d

)
and change t

d into t. It yields the following DDE for x:

x′(t) + dx(t) = bd(N (c∗ + x(t− 1))−N (c∗)). (3.4)

3.2 Study of the characteristic equation

The linearised problem of (3.4) around x = 0 has the characteristic equation

λ+ d = bdN ′(c∗)e−λ, λ ∈ C. (3.5)

Equations like (3.5) are classical in the theory of delay differential equations and were
extensively studied; see for example Appendix of [22] or Section 4.2 of [38]. By setting
z = λ+ d we can recast (3.5) into the form

zez = bdN ′(c∗)e
d. (3.6)

The solutions of Equation (3.6) can be written as the branches Wk(bdN ′(c∗)e
d), k integer,

of the Lambert function. So we know that there exists a countable set of solutions to
Equation (3.5) and by Lemma 4.2 of [38], there are either 0 or finitely many unstable
eigenvalues.

We denote “Rez” and “Imz” the real and imaginary parts of a complex number z. The
solution λ of (3.5) is called an unstable eigenvalue if Reλ > 0. If λ is an eigenvalue, then
so is λ, where λ is the complex conjugate of λ. Hence we can assume Imλ ≥ 0 without
loss of generality.

Note first that by (3.2), 1 − bN ′(c∗) > 0 and thus there are no real non-negative
eigenvalues. Then if we denote λ = µ+ iγ, and if we assume that µ, γ > 0, then

µ+ d = bdN ′(c∗)e−µ cos γ, γ = −bdN ′(c∗)e−µ sin γ. (3.7)
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Hence,
(bdN ′(c∗)e−µ)2 = (µ+ d)2 + γ2 ≥ d2.

Since µ > 0, (bN ′(c∗))2 ≥ e2µ ≥ 1. From (3.2), we have bN ′(c∗) 6 −1. This also implies
that if γ [2π] is the remainder of the division of γ by 2π, then γ [2π] ∈ (π/2, π) because
both right-hand sides in (3.7) must be positive.

Putting µ = 0 in the first equation of (3.7), we have

1 = bN ′(c∗) cos γ. (3.8)

Equation (3.8) has denumerably infinite many solutions γ because of bN ′(c∗) < −1.
We denote the minimal positive solution of (3.8) by γ1, where γ1 can be estimated as
π/2 < γ1 < π. Moreover we readily see that γk = γ1 + 2π(k − 1) (k = 2, 3, . . .) are also
solutions of (3.8). Then we define dk by

dk ≡ −
γk

bN ′(c∗) sin γk
. (3.9)

With the previous discussion and some additional arguments from the proof of Lemma 3
in [21], it is possible to prove the following result.

Lemma 3.6. Suppose that bN ′(c∗) < −1. Let k ≥ 1 be an integer. If dk < d < dk+1, then
there are exactly 2k unstable eigenvalues λi and λi (i = 1, . . . , k) of (3.5). On the other
hand, if d = dk, (3.5) has exactly 2k−2 unstable eigenvalues λi and λi (i = 1, . . . , k−1) and
eigenvalues λk and λk with Reλk = 0. Moreover, λi satisfies π/2 < Imλi − 2π(i− 1) < π.

Hence, we have the following corollary.

Corollary 3.7. Assume bN ′(c∗) < −1, and let d∗ = d1, where d1 is defined in (3.9). Then,
(3.5) has an unstable eigenvalue λ with π/2 < Imλ < π if and only if d∗ < d.

3.3 Properties of the non-linear term

Here we summarise the properties of the nonlinear term f0(x) ≡ −b(N (c∗+x)−N (c∗)),
which appears in the right-hand side of (3.4). It is easy to see that the following lemma
holds true so that we omit the details of the proof.

Lemma 3.8. Suppose that bN ′(c∗) ≤ −1. Then the smooth function f0(x) satisfies the
following properties;

(i) f0(0) = 0.

(ii) limx→−∞ f0(x) = bN (c∗) = c∗ < 0.

(iii) f ′0(x) > 0 in x ≤ 0 while there are exactly two zeros of f ′0(x) = 0 in x > 0, denoted
by x1 < x2. In particular, f ′0(0) = −bN ′(c∗) ≥ 1.

(iv) f0(x) is a Lipschitz function on R, that is, there is L0 > 0 such that |f0(x)− f0(y)| ≤
L0|x− y| for any x, y ∈ R.

We can give x1 explicitly such as x1 = VF − c∗ −
√
a by a direct calculation and see

x1 > 0 because of (3.3) and the assumption. Lemma 3.8 implies that the function f0(x) is
monotonically increasing and bounded in (−∞, x1]. Thus we define a function f(x) by

f(x) =

{
f0(x), x ≤ x1,

f0(x1), x > x1.

Under the assumption bN ′(c∗) ≤ −1, f ∈ C1(R) satisfies the following properties;

(f1) f(x)x > 0 in x 6= 0.

(f2) f(x) ≥ c∗ in x ∈ R.
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(f3) f ′(0) = −bN ′(c∗) ≥ 1.

(f4) There is L > 0 such that |f(x)− f(y)| ≤ L|x− y| in any x, y ∈ R.

From the condition (f3), it is easy to show that there exist α > 0 and δ > 0 such that

∀x ∈ (−δ, δ), |f(x)| ≥ α|x|, (3.10)

where δ is supposed to be less than −c∗ without loss of generality.

3.4 The Browder fixed-point method

We replace f0 in the right-hand side of (3.4) into f and consider

x′(t) + dx(t) = −df(x(t− 1)). (3.11)

From the conditions (f1)–(f4), we can prove the existence of a periodic solution of (3.11)
if d is sufficiently large. Then we will prove that this yields a periodic solution of (3.4).

Let C[−1, 0] denote the space of all continuous functions on [−1, 0] equipped with
the usual sup norm ‖ · ‖. We define K by the set of all functions ϕ ∈ C[−1, 0] such that
ϕ(−1) = 0, and edtϕ(t) is non-decreasing on −1 ≤ t ≤ 0. Moreover, we set K0 = K \ {0}
and BM = {ϕ ∈ K | ‖ϕ‖ ≤M} for a constant M > 0. We denote by x(t;ϕ) the solution of
(3.11) with an initial condition ϕ ∈ C[−1, 0].

Lemma 3.9. Let ϕ ∈ C[−1, 0]. Then there exists a unique global-in-time solution x(t;ϕ)

of (3.11). The solution x(t;ϕ) is Lipschitz continuous with respect to ϕ ∈ C[−1, 0], that
is, for any T > 0, there exists LT > 0 depending only on T such that

sup
t∈[0,T ]

|x(t;ϕ1)− x(t;ϕ2)| ≤ LT ‖ϕ1 − ϕ2‖. (3.12)

Proof. We rewrite (3.11) into an integral form

x(t;ϕ) = e−d(t−t0)x(t0;ϕ)− d
∫ t

t0

e−d(t−s)f(x(s− 1;ϕ))ds (3.13)

for any 0 ≤ t0 ≤ t. Let t0 = 0 and t ∈ [0, 1]. We have

|x(t;ϕ1)− x(t;ϕ2)| ≤ |ϕ1(0)− ϕ2(0)|+ d

∫ t

0

e−d(t−s)|f(ϕ1(s− 1))− f(ϕ2(s− 1))|ds

≤ (1 + L)‖ϕ1 − ϕ2‖,

which implies that if T ∈ [0, 1], (3.12) holds true.
By an induction argument, we complete the proof of the lemma.

Lemma 3.9 implies that for T > 0, the solution x(t;ϕ) satisfies

|x(t;ϕ)| ≤ LT ‖ϕ‖ (3.14)

on t ∈ [0, T ], which can be shown directly from (3.12) because x(t; 0) ≡ 0.
Next we prove that x(t;ϕ) has a zero at some t.

Lemma 3.10. Assume (1 +α)/α ≤ ed and let M > δ, where α and δ are defined in (3.10).
Let ϕ ∈ K0 with ‖ϕ‖ ≤ M . Then there exists a zero of x(t;ϕ), denoted by t = z1, such
that z1 > 0 and x′(z1;ϕ) < 0. Moreover, edtx(t;ϕ) is decreasing on [z1, z1 + 1].

Proof. Denote x(t) = x(t;ϕ) for simplicity. Since ϕ ∈ K0, we see ϕ(t) ≥ 0 on −1 ≤ t ≤ 0

and x(0) = ϕ(0) > 0. Let z1 = inf{t ≥ 0 | x(t) ≤ 0}. If z1 ≤ 1 and x′(z1) = 0, it follows
from (3.11) that f(ϕ(z1 − 1)) = 0 so that ϕ(t) = 0 in −1 ≤ t ≤ z1 − 1. Then we substitute
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t0 = 0 and t = z1 into (3.13) and then have x(0) = 0, which is a contradiction. Hence we
obtain x′(z1) < 0 if z1 ≤ 1.

Next we assume z1 > 1. Then x(t) decreases monotonically because x′(t) = −dx(t)−
df(x(t− 1)) ≤ 0 on t ∈ [0, z1], from which we have x(t) ≤ x(0) ≤M on t ∈ [0, z1]. Define
t1 = inf{t ≥ 1 | x(t) ≤ δ}. We prove that t1 is finite. If x(1) > δ, it follows from (f1) that

x′(t) = −dx(t)− df(x(t− 1)) ≤ −δd

on t ∈ [1, t1]. Integrating the both sides above on [1, t1], we obtain t1 ≤ 1 +M/(δd). Then
we assume that z1 > t1 + 1. Setting t0 = t1 + 1 and t ∈ [t1 + 1, t1 + 2] in (3.13), we have

x(t) = e−d(t−(t1+1))x(t1 + 1)−
∫ t

t1+1

e−d(t−s)df(x(s− 1))ds

≤ ((1 + α)e−d(t−(t1+1)) − α)x(t1 + 1).

The assumption implies x(t1 + 2) ≤ 0, from which we have

z1 ≤ t1 + 2 ≤ 3 +
M

δd
. (3.15)

In addition, we see that x′(z1) = −df(x(z1 − 1)) < 0.
Finally we see that (edtx(t))′ = −edtdf(x(t−1)) ≤ 0 on t ∈ [z1, z1 +1], which completes

the proof of the lemma.

For ϕ ∈ K0, there is another zero of x(t;ϕ).

Lemma 3.11. Assume the same conditions as in Lemma 3.10. Then there exists a zero
of x(t;ϕ), denoted by t = z2, such that z2 > z1 + 1 and x′(z2;ϕ) > 0. Moreover, edtx(t;ϕ)

is increasing and 0 ≤ x(t;ϕ) ≤ −c∗ on t ∈ [z2, z2 + 1].

Proof. Denote x(t) = x(t;ϕ) for simplicity. Define z2 = inf{t > z1 | x(t) > 0}. Substituting
t0 = z1 in (3.13), we see x(t) < 0 in t ∈ (z1, z1 + 1] and

x(z1 + 1) = −
∫ z1+1

z1

e−d(z1+1−s)df(x(s− 1))ds ≥ −LM. (3.16)

Hence we have z1 + 1 < z2. Then x(t) increases monotonically on t ∈ [z1 + 1, z2] because

x′(t) = −dx(t)− df(x(t− 1)) > 0.

Define t2 = inf{t ≥ z1 + 1 | x(t) > −δ}. In the case of x(z1 + 1) ≥ −δ, we set t2 = z1 + 1.
We assume t2 > z1 + 1 and show that t2 is finite. It follows from (f1) that

x′(t) = −dx(t)− df(x(t− 1)) ≥ δd

on z1 + 1 ≤ t ≤ t2. Integrating the inequality above over (z1 + 1, t2) and owing to (3.15),
we have

t2 ≤ z1 + 1 +
LM

δd
≤ 4 +

M

δd
(1 + L),

which implies that t2 is finite.
Suppose that z2 > t2 + 1. Setting t0 = t2 + 1 and t ∈ [t2 + 1, t2 + 2] in (3.13), we see

that

x(t) = e−d(t−(t2+1))x(t2 + 1)−
∫ t

t2+1

e−d(t−s)df(x(s− 1))ds

≥ ((1 + α)e−d(t−(t2+1)) − α)x(t2 + 1).

MNA 2 (2022), paper 4.
Page 14/37

https://mna.episciences.org/

https://doi.org/10.46298/mna.7256
https://mna.episciences.org/


Kota Ikeda, Pierre Roux, Delphine Salort, Didier Smets

Therefore it follows from the assumption that x(t2 + 2) is nonnegative, which implies
z2 ≤ t2 + 2.

Finally we see that (edtx(t))′ = −edtdf(x(t− 1)) ≥ 0 from (3.11) on z2 ≤ t ≤ z2 + 1. By
setting t0 = z2 and t ∈ [z2, z2 + 1], it follows from (f2) that

0 ≤ x(t) = −
∫ t

z2

e−d(t−s)df(x(s− 1))ds ≤ −c∗,

which completes the proof of the lemma.

We may emphasise the ϕ-dependency of z2 and denote z2 = z2(ϕ). Fix M > 0

arbitrarily. Lemmas 3.9–3.11 imply that z2(ϕ) is well-defined, continuous and uniformly
bounded in BM ∩K0. In particular, we readily see that z2(ϕ) > z1 + 1 and

z2(ϕ) ≤ t2 + 2 ≤ 6 +
M

δd
(1 + L). (3.17)

We define the functional F : K → C[−1, 0] by

[Fϕ](t) = x(z2(ϕ) + 1 + t;ϕ), t ∈ [−1, 0]

for ϕ 6≡ 0 and [Fϕ](t) = 0 for ϕ ≡ 0.
Then F satisfies the following lemma.

Lemma 3.12. Assume the same conditions as in Lemma 3.10. Then the following two
conditions hold true;

(i) F(B−c∗) ⊂ B−c∗
(ii) F is continuous and compact.

Proof. The condition (i) can be verified by Lemma 3.11. The continuity of F can be
proved by Lemma 3.9. Set M = −c∗ and let (ϕn)n∈N ∈ BM

N. We can assume that
ϕn 6≡ 0 for all n without loss of generality. Denote xn(t) ≡ x(z2(ϕn) + 1 + t;ϕn). By the
assumption (f4), for all n ∈ N, for all t, t1, t2 ∈ [−1, 0] with t2 6 t1, we have 0 6 xn(t) 6M

and

|xn(t1)− xn(t2)| ≤
∫ t1

t2

|x′n(s)|ds 6 dM(1 + L)(t1 − t2).

Since {xn(t)} is uniformly bounded and uniformly equicontinuous, by the Arzelà-Ascoli
Theorem, a subsequence (xnk)k∈N converges in C[−1, 0], which implies that F is compact.

According to the Schauder’s fixed point theorem [19], Lemma 3.12 implies the
existence of a fixed point ϕ∗ of F . However, since F(0) = 0, ϕ∗ may be identically equal
to 0. Actually, we can exclude this possibility by the Browder’s fixed point theorem
(Theorem 1 in [3]). We first prove the next lemma.

Lemma 3.13. Assume bN ′(c∗) < −1 and d1 < d, where d1 is defined in (3.9). Then there
exists A > 0 such that for all ϕ ∈ K0, for all zero z of x(t;ϕ), supt≥z |x(t;ϕ)| ≥ A.

Proof. From Corollary 3.7, the characteristic equation (3.5) has an eigenvalue λ = µ+ iγ

with µ > 0 and π/2 < γ < π. Let ε be a positive constant satisfying

ε <
µ

d
e−d

1

2
cos

γ

2
. (3.18)

Define h(x) = f ′(0)x− f(x). Since f ∈ C1(R) and f(0) = 0, there exists A > 0 such that
for all x ∈ [−A,A],

|h(x)| ≤
∫ |x|

0

|f ′(0)− f ′(y)|dy 6 ε|x|. (3.19)
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Assume that there are ϕ ∈ K0 and a zero z of x(t) ≡ x(t;ϕ) such that κ ≡ supt≥z |x(t;ϕ)| <
A. Define y(t) = edtx(t). From Lemmas 3.10 and 3.11, there is an extremum m ∈ (z, z+1)

such that |x(m)| ≥ κ/2. Moreover, we assume without loss of generality that x′(z) > 0

and y′(t) > 0 in (z, z + 1), because the case x′(z) < 0 and y′(t) < 0 in (z, z + 1) can be
treated by the same method.

From (3.11), we have

x′(t) = −dx(t)− df ′(0)x(t− 1) + dh(x(t− 1)).

Set T = z + 1. We multiply both sides by e−λt, integrate over (T,+∞), and change
variables in the delayed terms; it yields∫ +∞

T

x′(t)e−λtdt = −d
∫ +∞

T

x(t)e−λtdt− df ′(0)e−λ
∫ +∞

T−1

x(t)e−λtdt

+ d

∫ +∞

T

h(x(t− 1))e−λtdt.

Using that f ′(0) = −bN ′(c∗) and that λ satisfies (3.5), we get∫ +∞

T

x′(t)e−λtdt = d

∫ T

T−1

x(t)e−λtdt+ λ

∫ +∞

T−1

x(t)e−λtdt+ d

∫ +∞

T

h(x(t− 1))e−λtdt.

Integrating by parts, we obtain∫ +∞

T

x′(t)e−λtdt = −x(T )e−λT + λ

∫ +∞

T

x(t)e−λtdt.

Then it follows that

−x(T )e−λT = (d+ λ)

∫ T

T−1

x(t)e−λtdt+ d

∫ +∞

T

h(x(t− 1))e−λtdt.

Multiplying eλ(T−1/2) to both sides, we have

−
∫ T

T−1

y′(t)e−dt−λ(t−T+1/2)dt = d

∫ +∞

T

h(x(t− 1))e−λ(t−T+1/2)dt. (3.20)

We know that y′(t) > 0 in (T − 1, T ) and y(T − 1) = ed(T−1)x(T − 1) = edzx(z) = 0 and
since γ ∈ (π2 , π), the function t 7→ e−dt−µ(t−T+1/2) cos

(
γ
(
t− T + 1

2

))
is decreasing on

(T − 1, T ). Hence,∣∣∣∣∣
∫ T

T−1

y′(t)e−dt−λ(t−T+1/2)dt

∣∣∣∣∣ ≥
∫ T

T−1

y′(t)e−dt−µ(t−T+1/2) cos

(
γ

(
t− T +

1

2

))
dt

≥
(
y(T )− y(T − 1)

)
e−dT−

µ
2 cos

γ

2

= x(T )e−
µ
2 cos

γ

2
.

(3.21)

On the other hand, we upper-bound the right-hand side of (3.20) as∣∣∣∣∫ ∞
T

h(x(t− 1))e−λ(t−T+ 1
2 )dt

∣∣∣∣ ≤ εκ 1

µ
e−

µ
2 . (3.22)

Moreover, we set t = T and t0 = m in (3.13) and then have

x(T ) = e−d(T−m)x(m)−
∫ T

m

e−d(t−s)df(x(s− 1);ϕ)ds ≥ e−dκ
2
.
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From this inequality and (3.20)–(3.22), we see

e−
µ
2 cos

γ

2
e−d

κ

2
≤ dεκ 1

µ
e−

µ
2 ,

which contradicts (3.18). Hence we complete the proof of Lemma 3.13.

From Lemma 3.13, there are infinitely many zeroes and extrema of x(t;ϕ) for ϕ ∈ K0,
denoted by zn and mn respectively, such that mn ∈ (zn, zn + 1) and |x(mn)| ≥ A

2 . This
result yields the following lemma.

Lemma 3.14. Assume bN ′(c∗) < −1 and d1 < d, where d1 is defined in (3.9). Let A be
the positive constant given in Lemma 3.13. For all ϕ ∈ K0, there are an even integer n
and a positive constant A1 > 0 such that x(mn;ϕ) ≥ A1.

Proof. Denote x(t) = x(t;ϕ). Set A1 = min{A/(2L), A/2} and suppose that x(m2n) < A1

for all n ≥ 1. By putting t0 = z2n+1 and t = m2n+1 in (3.13), it follows from (f4) that

x(m2n+1) = −
∫ m2n+1

z2n+1

e−d(m2n+1−s)df(x(s− 1))ds > −A
2
,

which is in contrast to Lemma 3.13.

Proof of Theorem 3.1. From Lemma 3.14, we see that for any ϕ ∈ K0, there is a suffi-
ciently large integer n such that ‖F (n)(ϕ)‖ ≥ A1, which implies that ϕ ≡ 0 is an ejective
point in the sense of Definition 3.2. Therefore, by Theorem 3.3 there exists a nonzero
fixed point ϕ∗ 6≡ 0 of F . From the assumption V 2

F ≥ a, we see that x1 ≥ −c∗ and then
c(t) ≡ c∗ + x( td ;ϕ∗) is a periodic solution of (3.1).

In order to complete the proof of Theorem 3.1, we estimate x(t;ϕ∗). From the proof
of Lemma 3.10, x(t;ϕ∗) ≤ −c∗ on t ∈ [0, z1]. By the same argument as in the proof of
Lemma 3.11, x(t;ϕ∗) attains a local minimum at t = m ∈ (z1, z1 + 1). Setting t0 = z1 and
t = m in (3.13), we have

x(m;ϕ∗) = −
∫ m

z1

e−d(m−s)df(x(s− 1;ϕ))ds ≥ Lc∗.

Then it holds that (L + 1)c∗ ≤ c(t) ≤ 0, which also implies that c(t) must be negative
because bN (c(t− d)) is negative. Since L and c∗ are independent of d, t, we have proved
Theorem 3.1.

4 Asymptotic description of the periodic solution

We now prove an asymptotic result on the shape of solutions of equation

c′(t) + c(t) = bN (c(t− d)), N (c) = (VF − c) exp

(
− (VF − c)2

2a

)
. (4.1)

We are going to describe in appropriate rescaled variables a periodic asymptotic profile
P (t) which is the limit of some solutions of (4.1) when b goes to −∞. As a consequence,
this profile is also (up to phase shift) the limit of the periodic solutions of (4.1) and hence
an asymptotic description of how they behave.

In order to do so, we assume for the sake of clarity that VF = 0, d = 1 and we make
the change of variables

β =
1

log(−b)
, u(s) = β log

(
− 1√

a
c

(
s

β

))
. (4.2)
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This rescaling is meaningful only when b < −1, which reminds us of Case 2 (VF = 0,
b < −1) in the previous section. We come to the following equivalent system:

u′β(t) + 1 = exp

(
1

β
(1− uβ(t)) + f

(
uβ(t− β)

))
, 1 ≥ uβ([−β, 0]) > 0 (4.3)

with

f(x) =
1

β
x− 1

2
e

2
β x. (4.4)

Equation (4.3) has a unique constant positive stationary state given by

uβ =
β

2
log

(
2

β

)
, (4.5)

and we readily observe that
lim
β→0

uβ = 0.

Note that when b goes to −∞, β tends to 0. If b� 0, then 0 < β � 1.

Theorem 4.1. Assume that for all β > 0, uβ([−β, 0]) ≡ 1 and let T > 2. Then, there
exists a constant CM ∈ (0, 1] such that

lim
β→0

uβ = P, in L1(0, T ),

where P has the following form:

• P (t) = 1− t on (0, 1);

• P (t) = CM + 1− t on (1, 1 + CM );

• P is CM periodic on (1, T ).

We summarise our approach in Figure 1.

t

uβ(t)

Lemma 4.4

1

CM
Lemma 4.6

C

ū0 + β
2

ū0 − β
2

t0 1 t1 t2

Lemma 4.8

Lemma 4.5

Figure 1: Strategy of the proof : Lemma 4.4 is used to prove convergence to a straight
line, Lemma 4.5 gives rapid growth to a β−independent constant C, Lemma 4.8 gives
t0, t1, t2 → 1; Lemma 4.6 helps proving periodicity of P .

Before proving this result, let us make some comments on its implications.
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• First, we make the assumption uβ([−β, 0]) ≡ 1 for the sake of clarity. A key
mechanism being the unstable nature of the stationary state uβ, we expect that
it is enough to take an initial condition which is not uniformly uβ to get the same
convergence result after a transitory period. Our numerical simulations confirm
that the hypothesis is purely technical.

• The form of our rescaling and Theorem 4.1 indicates that the period Tb of the
numerically observed periodic solutions c of (1.8) evolves in O

(
log(−b)

)
when

b→ −∞.

• More precisely, we have in the original variables

c(t) ' −
√
a exp

(
log(−b)P

(
t

log(−b)

))
.

In decay phases, this approximation means that c behaves like

c(t) ' −
√
aeCM log(−b)−t = Sbe

−t,

which constitutes an exponential decay over a spatial area of length Sb =
√
a(−b)CM

during a time Tb = CM log(−b). Remember that CM ∈ (0, 1].

• The approximation of c(t) by the discontinuous profile hides a very fast growth
phase which makes the exponential decay appear slow in comparison. Lemma 4.5
gives an idea of this growth phase in rescaled variables.

We are now going to prove the convergence of uβ towards this periodic asymptotic
profile P when β goes to 0. To do so, we rely on the instability of the stationary state uβ .
Our strategy is to study independently different phases of the solution:

1. a decay phase with asymptotic slope −1 (Lemma 4.4);

2. a rapid growth phase up to some uniform constant C (Lemma 4.5);

3. a maximal value which presents some handy stability properties from which we
will derive the periodicity of the final profile (Lemma 4.6, Lemma 4.8).

4.1 Convergence of uβ to a profile P when β → 0.

Let us first observe that the function f defined in (4.4) is decreasing on [0,+∞) with
f(0) = − 1

2 and f(+∞) = −∞. Indeed, we have

f ′(x) =
1

β
(1− e

2
β x) < 0 on (0,+∞).

Here, we ensure that a limit profile does exist, without describing it yet.

Lemma 4.2. Assume lim infβ→0 uβ(0) > 0. There exists β0 > 0 such that for all β ∈ (0, β0),
the solution of (4.3) satisfies : for all t > 0,

0 < uβ(t) < 1

and for all T > 0, ∫ T

0

|u′β(t)|dt ≤ 2T + 1.

Moreover, there exist a sequence βn which converges to 0 and a function P such that

• 0 ≤ P ≤ 1

• P ∈ BV , with BV the set of functions with bounded variations
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• limn→+∞ uβn = P in L1(0, T ).

Proof. Let us first prove that uβ > 0 for all t > 0. Assume that there exists a first time
t0 such that u(t0) = 0; we have for all t < t0, u(t) > 0. By continuity of the derivative,
u′β(t0) ≤ 0.

At this step, there are two possibilities :

• either uβ(t0−β) > β, and, since for all t ≥ 0, u′β(t) > −1, we have uβ(t0) > 0, which
is incompatible with u(t0) = 0;

• or uβ(t0 − β) ≤ β, and, since f is decreasing, we obtain that

u′β(t0) ≥ −1 + e
1
β+f(β),

but f(β) = 1− 1
2e

2 and so, for β small enough,

u′β(t0) ≥ e
1
2β

which is in contradiction with u′β(t0) ≤ 0.

Hence, for all t > 0, we have uβ(t) > 0.
Let us now prove that for all t > 0, uβ(t) < 1. If uβ(0) = 1, then since f < 0,

u′β(0) = −1 + ef
(
uβ(−β)

)
< 0. Hence in both the cases uβ(0) = 1 and 0 < uβ(0) < 1 there

exists ε > 0 such that for all t ∈ (0, ε], uβ(t) < 1. Let t1 = inf{t > 0| uβ(t1) = 1}. Assume
t1 < +∞, then u′β(t1) < 0 and there exists a small neighbourhood (t1 − ε1, t1) such that
for all t ∈ (t1 − ε1, t1), uβ(t) > 1, which constitutes a contradiction.

To prove the uniform estimate on the derivative of uβ, we first integrate Equation
(4.3) between 0 and T , and obtain

uβ(T )− uβ(0) = −T +

∫ T

0

e
1
β (1−uβ(t))+f(uβ(t−β))dt.

Hence, ∫ T

0

e
1
β (1−uβ(t))+f(uβ(t−β))dt ≤ T + 1

and so ∫ T

0

|u′β(t)|dt ≤ 2T + 1.

These β-uniform bounds on the solution and its derivative imply the existence, up to
extraction of a subsequence, of an L1 limit P .

Remark 4.3. Note that by compactness, there exists a subsequence (βn)n∈N converging
to 0 and a value u0 ∈ (0, 1] such that limβn→0 uβn(0) = u0. In Theorem 4.1, we prescribe
u0 = 1 in order to have a clear expression of the profile; another value u0 ∈ (0, 1) would
give a similar but shifted profile.

4.2 Description of the qualitative properties of uβ

Let us come back to a more precise description of the dynamics related to the delay
equation satisfied by uβ .

When the solution starts at the value 1, it first decays down to a local minimum which
is smaller than the stationary state. The following Lemma describes the asymptotic pace
of such decay with respect to β.
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Lemma 4.4. Let I be an interval of R+. Assume that for all t ∈ I,

uβ(t− β) ≥ uβ +
β

2
.

Then, for all t ∈ I, the following estimate holds

− 1 ≤ u′β(t) ≤ −1 + e
1
β (1−e)+1. (4.6)

Proof. Let us first remark that, since we always have u′ ≥ −1, this implies that

uβ(t) ≥ uβ(t− β)− β.

Hence,
u′β(t) ≤ −1 + e

1
β (1−uβ(t−β))+1+f(uβ(t−β)).

Now, if we consider the function g given by

g(x) =
1

β
(1− x) + 1 + f(x) =

1

β
+ 1− 1

2
e

2
β x,

then g′(x) < 0 and thus g is decreasing. We deduce that while u(t−β) ≥ uβ + β
2 , we have

u′β(t) ≤ −1 + eg(uβ+ β
2 ).

But,

g(uβ +
β

2
) =

1

β
(1− e) + 1,

which proves Lemma 4.4.

Then, the solution grows rapidly. The following Lemma provides a quantitative grasp
on the phenomenon.

Lemma 4.5. Let ε > 0. Let I be an interval of R+. Assume that for all t ∈ I,

uβ(t− β) ≤ uβ −
β

8
and uβ(t) ≤ 1− e− 1

4 − ε.

Then, for all t ∈ I, the following estimate holds

u′β(t) ≥ −1 + e−
1
8

(
2

β

) 1
2

e
ε
β .

Proof. Since uβ(t− β) ≤ uβ − β
8 and f is decreasing, we have

u′β(t) ≥ −1 + e
1
β (1−uβ(t))+f(uβ− β8 ).

However,

f

(
uβ −

β

8

)
=

1

2
log(

2

β
)− 1

8
− 1

β
e−

1
4 .

Hence, while uβ(t) ≤ 1− e− 1
4 − ε, we have

u′β(t) ≥ −1 + e−
1
8

(
2

β

) 1
2

e
ε
β ,

which proves Lemma 4.5.
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Now, we are going to prove a stability estimate on Equation (4.3). As the solution
goes down below the fading uβ, we want to show that small initial conditions lead to
similar outcomes. The goal is to prove later that the rapid growth phase yields a stable
asymptotic maximum value. More precisely, the following result holds.

Lemma 4.6. Let u1, u2 be two solutions of Equation (4.3) and let t be a time such that
there exist two positive constants C and α1 independent of β and a value β0 > 0 small
enough such that for all β ∈ (0, β0),

|u1(s)− u2(s)| ≤ Ce−
α1
β , ∀s ∈ (t− β, t), (4.7)

Assume that there exists k ∈ N such that for all s ∈ (t− β, t+ kβ),

|u1(s)| ≤ uβ + Cβ or |u2(s)| ≤ uβ + Cβ. (4.8)

Then, there exists α2 > 0 independent of β such that for all β ∈ (0, β0), for all s ∈
(t, t+ (k + 1)β), the following estimate holds

|u1(s)− u2(s)| ≤ e−
α2
β . (4.9)

Proof. Without loss of generality, with assumption (4.8), we can assume that for all
s ∈ (t− β, t+ kβ),

|u1(s)| ≤ uβ + Cβ.

We have for all s ≥ t

(u1 − u2)′(s) = e
1
β (1−u1(s))ef(u1(s−β)) − e

1
β (1−u2(s))ef(u2(s−β))

and so

(u1 − u2)′(s) = (u′1(t) + 1)(1− e(f(u2)−f(u1))(s−β)) + (u′2(t) + 1)(e
1
β (u2−u1)(s) − 1).

Multiplying the above equation by u1 − u2, we obtain that

1

2

(
(u1 − u2)2

)′
(s) = (u′1(s) + 1)(1− e(f(u2)−f(u1))(s−β))(u1 − u2)(s)

+ (u′2(s) + 1)(e
1
β (u2−u1)(s) − 1)(u1 − u2)(s).

As
(u′2(s) + 1)(e

1
β (u2−u1)(s) − 1)(u1 − u2)(s) ≤ 0,

we deduce that

(
(u1 − u2)2

)′
(s) ≤ (u′1(s) + 1)

(∣∣∣∣1− ef(u2(s−β)
)
−f
(
u1(s−β)

)∣∣∣∣2 + (u1 − u2)2

)
.

But, with Lemma 4.2, we know that there exists a constant C1 > 0 such that for all
s ∈ (t, t+ (k + 1)β),

e
∫ s
t

1+u′1(w)dw ≤ C1.

By Gronwall inequality, we then obtain that for all s ∈ (t, t + (k + 1)β), the following
estimate holds

(u1 − u2)2(s) ≤ C1

(
(u1 − u2)2(t) + ‖1− ef(u2)−f(u1)‖2L∞(t−β,s−β)

)
and so there exists a constant C2 > 0 such that for all s ∈ (t, t+ (k + 1)β),

(u1 − u2)2(s) ≤ C2

(
e−2

α1
β + ‖1− ef(u2)−f(u1)‖2L∞(t−β,s−β)

)
. (4.10)
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Let us deal with the term

‖1− ef(u1)−f(u2)‖L∞(t−β,s−β).

As with assumption (4.8),
|u1(s)| ≤ uβ + Cβ,

we obtain that for all s ∈ (t− β, t),

|f(u1)− f(u2)|(s) ≤ C

β
e−

α1
β +

1

2
e

2
β (uβ+Cβ)(1− e

2
β (u2−u1)).

But

e
2
β (uβ+Cβ) ≤ e2C 2

β
.

Hence, for all s ∈ (t− β, t), there exist constants C3, C4 > 0 such that

‖1− ef(u1)−f(u2)‖L∞(t−β,s−β) ≤ C3‖f(u1)− f(u2)‖L∞(t−β,s−β)

≤ C4
1
β2 e
−α1

β .

For β small enough we have

e−2
α1
β = e−

α1
β e−

α1
β 6

1

β
e−

α1
β .

Hence, coming back to estimate (4.10), we obtain that for all s ∈ (t, t+ β), there exists a
constant C5 such that

|u1 − u2|(s) ≤ C5
1

β2
e−

α1
β .

By induction, we then obtain that there exists a constant C6 such that for all s ∈
(t− β, t+ kβ),

|f(u1)− f(u2)|(s) ≤ C6

(
1

β

)2k+2

e−
α1
β

and so there exists a constant C7 > 0 such that for all s ∈ (t− β, t+ (k + 1)β),

|u1 − u2|(s) ≤ C7

(
1

β

)2k+2

e−
α1
β .

The constant C7 being independent of β, we can choose β0 so to have, for all β ∈ (0, β0),

C7

(
1

β

)2k+2

≤ 1,

which concludes the proof of Lemma 4.6.

4.3 Description of the profile P .

The following theorem holds.

Theorem 4.7. Assume that for all β > 0, uβ([−β, 0]) ≡ 1 and let T > 2. Then, there
exists a constant CM > 0 such that the profile P has the following form

P (t) = 1− t on (0, 1)

P (t) = CM + 1− t on (1, 1 + CM )

and P is CM periodic on (1, T ).
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Proof. Step 1: proof of the shape of the profile on (0,1). We are going to prove that u′β
converges uniformly to −1 on the interval [0, uβ(0)− ε], for all ε > 0.

First, note that uβ tends to 0 when β goes to 0. Let ε > 0. Since u′β ≥ −1, for all
t ∈ [0, uβ(0)− ε],

uβ(t) = uβ(0) +

∫ t

0

u′β(s)ds ≥ uβ(0)− t ≥ ε.

Hence we can choose β small enough in order to have for all t ∈ [−β, uβ(0)− ε],

uβ(t) ≥ uβ +
β

2
.

Then, using Lemma 4.4, we deduce that for β small enough, for all t ∈ [0, uβ(0)− ε]

−1 ≤ u′β(t) ≤ −1 + e
1
β (1−e)+1,

which proves the result.

Step 2: Description of the discontinuity of P at t = 1 via uβ. To understand what
happens at the point 1 in the limit β → 0, let us describe more precisely some qualitative
properties of the function uβ:

Lemma 4.8. Assume that for all β > 0, uβ([−β, 0]) ≡ 1. The following properties hold.

• Let t0(β) be the first time such that u′β(t0(β)) = 0. Then, uβ(t0(β)) ≤ uβ − β
4 is a

local minimum. Moreover, we have

1− uβ − 2β ≤ t0(β) ≤ 1− uβ + 2β.

• There exists a constant C > 0 independent of β and a minimal time t1(β) with
t0(β) + β > t1(β) > t0(β) such that

uβ(t1(β)) ≥ C.

• There exists t2(β) ∈ [t1, t1 + β) such that

C1(β) := uβ(t2(β)) = sup
t∈(t0,t1+β)

uβ(t). (4.11)

Moreover u′β converges uniformly to −1 on [t1 + β, t1 + β + C1(β)− ε], for all ε > 0.

Proof of Lemma 4.8. Let us prove the first property of Lemma 4.8. First, remark that
with estimate (4.6), if we consider the first time t such that u(t− β) = uβ + β

2 , then

u′β(s) ≤ −1 + e
1
β (1−e)+1

for all s ∈ (0, t]. Therefore, if β is small enough u′β is close enough to −1 on [0, t) and

we have uβ(t) ≤ uβ − β
4 . Hence, at the first time t0(β) > t such that u′β(t0) = 0, we

have uβ(t0) < uβ − β
4 . Let us now prove that t0(β) is a local minimum. To do so, we

differentiate Equation (4.3) and we find that

u′′β(t0) = u′β(t0 − β)f ′(u(t0 − β))e
1
β (1−uβ(t))+f(uβ(t−β)).

As f ′ < 0 and u′β(t0 − β) < 0, we deduce that u′′β(t0) > 0 and hence t0(β) is a local
minimum. The proof of the fact that

1− uβ − 2β ≤ t0(β) ≤ 1− uβ + 2β
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is a direct consequence of Lemmas 4.4 and 4.5.

Let us now prove the second property of Lemma 4.8. We remark that as uβ(t0) <

uβ − β
4 , and u′β ≥ −1, then, for all t ∈ (t0 − β

8 , t0), we have uβ(t) ≤ uβ − β
8 . this implies

that on (t0 + 7β
8 , t0 + β), we can apply Lemma 4.5. Let ε > 0 be small enough. While

uβ(t) ≤ 1− e− 1
4 − ε, we have

u′β(t) ≥ −1 + Ce
ε
β .

Moreover, integrating the above estimate on an interval of size β, we conclude that there
exists t1 ∈ (t0, t0 + β) such that uβ(t) ≥ 1− e− 1

4 − ε.

To prove the third property of Lemma 4.8, we observe that as u′β ≥ −1, on (t1, t1 + β),

uβ(t) ≥ 1− e− 1
4 − β − ε.

Hence, using estimate (4.6), we deduce that while u(t − β) ≥ uβ + β
2 , uβ is strictly

decreasing. We deduce that there exists a time t2(β) ∈ [t1, t1 + β) such that

C1 := uβ(t2(β)) = sup
t∈(t0,t1+β)

uβ(t)

with uβ satisfying estimate (4.6) on [t1 + β, t1 + β + C1(β)− ε(β)] with ε(β)→ 0 when β
goes to 0. We then deduce that u′β converges uniformly to −1 on [t1 +β, t1 +β+C1(β)−ε],
for all ε > 0 which ends the proof of Lemma 4.8.

Step 3: Proof of the CM periodicity of P . With Lemma 4.8, we know that P is a piecewise
linear function with slope −1 between the jumps, that this function decreases until
reaching the value 0 and that it has a jump upon reaching the value 0. We now have to
prove that this jump is always the same at each step.

To do this, we first observe that, on the one hand, up to a subsequence, C1(β) defined
in (4.11) converges to a value CM ∈ (0, 1]. To prove that CM is exactly the jump of P at
the value 1, we observe that, since u′β ≥ −1, for all t ∈ (t2(β), t1(β) + β),

C1(β)− β ≤ uβ(t) ≤ C1(β).

On the other hand, combining Lemmas 4.8 and 4.4, we know that there exists a first
time t ∈ [1, 2] such that uβ(t) = uβ + β

2 and for all s ∈ (t, t+ β)

uβ(s) = uβ +
β

2
+ t− s+O(e(1−e)β−1

).

Hence, to prove that P is periodic, we have to prove that by taking an initial data such
that for s ∈ (−β, 0),

u1(s) = uβ +
β

2
+ s

and another initial data such that for s ∈ (−β, 0),

u2(s) = uβ +
β

2
+ s+O(e(1−e)β−1

),

then the maximal values C1
1 (β) and C2

1 (β) defined in (4.11), associated to u1 and u2 given
by the third step of Lemma 4.8 are such that

lim
β→0

C1
1 (β) = lim

β→0
C2

1 (β).
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To prove this, we first use Lemma 4.8 which implies that there exist t12(β) and t22(β) such
that

u1(t12(β)) = C1
1 (β) and u2(t22(β)) = C2

1 (β).

Moreover, we know that there exists a constant C independent of β such that

|t12(β)|+ |t22(β)| ≤ Cβ.

We can assume without loss of generality that t22(β) ≥ t12(β). By the contraposition of
Lemma 4.4, we know that

u2(t22 − β) ≤ uβ +
β

2
.

Hence, again, because u′2 ≥ −1, this implies that for all s ∈ (t22 − 2β, t22 − β),

u2(s) ≤ uβ +
3

2
β.

Hence, we are in the setting of Lemma 4.6 as soon as t ≤ t22 − β. Moreover, using

|t12(β)|+ |t22(β)| ≤ Cβ,

we obtain that there exists a constant α > 0 such that for all s ∈ (−β, t22)

|u1(s)− u2(s)| ≤ e−αβ
−1

,

which implies that
lim
β→0

C1
1 (β) = lim

β→0
C2

1 (β).

This ends the proof of Theorem 4.7.

Proof of Theorem 4.1. This result is a direct consequence of Theorem 4.2 and Lemma 4.7.

5 Numerical experiments

The following numerical experiments were computed using Python. The full code
is available on GitHub on the following link: https://github.com/pierreabelroux/Ikeda_
Roux_Salort_Smets_2022. The figures of this article2 can be reproduced by running the
figure functions at the end of the code.

5.1 Periodic solutions of the PDE

The PDE (1.4) is challenging from a numerical point of view because of the non-local
nonlinearity. Efficient numerical methods were designed specifically for this equation
[8, 12, 26]. Here we use the structure preserving semi-implicit scheme from [26] with
an improvement from [25] which consists in treating implicitly the firing and resetting
mechanism.

More precisely, the scheme is based upon the Scharfetter-Gummel reformulation

∂p

∂t
− a ∂

∂v

(
M(v, t)

∂

∂v

(
p(v, t)

M(v, t)

))
= 0, (5.1)

with

M(v, t) = e−
(v−bN(t−d))2

2a .

2Apart from Figure 1 which is a mouse-made Microsoft Paint drawing.
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Given a spatial grid v0 = Vmin, v1, . . . , vn = VF , Equation (5.1) is approximated by a
centre difference scheme with fluxes Fi+ 1

2
and the numerical terms Mi+1/2 between grid

points vi and vi+1 are computed as harmonic means of the approximations Mi and Mi+1

of M(v, t) at v = vi and v = vi+1:

Mi+ 1
2

=

(
1

2

(
1

Mi
+

1

Mi+1

))−1

=
2MiMi+1

Mi +Mi+1
.

The semi-implicit scheme from time tj to time tj+1 can be written in matrix form

pj+1 =

(
I +

a∆t

∆v2
M
)−1

pj ,

where I is the identity matrix, ∆t = tj+1 − tj , ∆v = vi+1 − vi, p
j
i is the numerical

approximation of p(vi, tj), pj = (pji )06i6n and M is a matrix which depends upon the
Mi and the Mi+ 1

2
. The firing and resetting mechanism is treated implicitly by adding

appropriate coefficients inM: the implicit flux N(t) is approximated with a first order
finite difference:

N(tj+1) ' −a
pj+1
n − pj+1

n−1

∆v
=

a

∆v
pj+1
n−1,

since the boundary condition in VF implies pj+1
n = 0. We take constant time and space

steps ∆t and ∆v.

Figure 2: Simulation of the PDE (1.4) in Setup 5.1 with b = −45; (A.) solution at three
different times; (B.) evolution in time of the firing rate N(t); (C.) evolution in time of the
first moment (average) and the maximum point of the solution; (D.) evolution in time of
the logarithmic relative entropy S(p|p∞)(t).

This numerical scheme has many advantages: it is positivity preserving, mass con-
servative and when b = 0 it is proved to preserve the decay of the quadratic relative
entropy

S(p|p∞)(t) =

∫ VF

−∞
p∞(v)G

(
p(v, t)

p∞(v)

)
dv, (5.2)
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with G(x) = (x− 1)2. The scheme is called semi-implicit because when d = 0 the matrix
M depends on N(tj) ' a

∆vp
j
n−1, but when d > 0 the scheme can be considered fully

implicit.

Figure 3: Simulation of the PDE (1.4) in Setup 5.1 for different values of b; (A.) L1 and
L∞ norms of the firing rate N(t); (B.) evolution in time of N(t) for b = −1000.

In these numerical experiments, we will focus on two different settings. The first one
satisfies the hypotheses of Theorem 3.1:

Setup 5.1. We take VF = 1, VR = 0, a = 0.2, d = 1.

The second setting satisfies the hypotheses of Theorem 4.1:

Setup 5.2. We take VF = 0, VR = −2, a = 0.2, d = 1.

Whenever it is possible, the colours of the curves are related to the setup we investi-
gate.

In Figure 2 we simulate the PDE (1.4) in Setup 5.1 with b = −45. The solution
converges rapidly towards a periodic solution. Figure 2A shows the shape of the solution
at different times during the period. Figure 2B shows the evolution in time of the firing
rate N(t) compared to the stationary firing rate N∞. Figure 2C shows two indicators of
how the solutions moves in time:

• the first moment, which represents the centre of the solution when it is close to a
Gaussian function:

m1(t) =

∫ VF

−∞
vp(v, t)dv;

• the maximum point of the solution:

argmax { p(v, t) | v ∈ (−∞, VF ] }.

As we can see, these two indicators match closely away from VF and there is a slight
discrepancy when the solution looses its Gaussian shape. Figure 2D shows the evolution
in time of the logarithmic relative entropy, which is given by (5.2) with G(x) = x log(x).
The quadratic relative entropy was used to prove convergence towards the stationary
state in [8, 14, 10] and it is a good indicator of how the stationary state is either stable
or unstable. When b < 0 is small enough, it is proved that there exist some constants
A0 > 0, µ > 0 and t0 > 0 such that3

∀t > t0, S(p|p∞)(t) 6 A0e
−µtS(p|p∞)(t0).

3In the delayed case d > 0 the precise result is a bit more complex because of the initial condition for N(t)
between −d and 0, but the spirit is the same: exponential convergence to 0 of the quadratic relative entropy.
See [10, Th. 5.3].
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However, we plotted the logarithmic relative entropy rather than the quadratic one for
the sake of readability. We approximate the stationary state (p∞, N∞) by running for a
large enough time Equation (1.4) without delay (d = 0). Note that in each period the
periodic solution passes twice close to the stationary state before moving away. This
resembles an elliptic movement of the solution around the stationary state, consistently
with the idea that the periodic solution arises from a Hopf bifurcation.

Figure 4: Simulation of the PDE (1.4) in Setup 5.2 with b = −35; (A.) solution at three
different times; (B.) evolution in time of the firing rate N(t); (C.) evolution in time of the
first moment (average) and the maximum point of the solution; (D.) evolution in time of
the logarithmic relative entropy S(p|p∞)(t).

In Figure 3 we validate numerically Conjecture 2.3 in Setup 5.1. We compute the
solution of Equation (1.4) for different values of b ranging from −1000 to −50. Figure
3A shows the evolution in b of the L∞ and L1 norms of t 7→ N(t) over a period. The L1

norm is computed by averaging over multiple periods. Figure 3B shows what the firing
rate N(t) looks like in the extreme case b = −1000. It was not possible to explore larger
order of magnitude for |b| because the numerical solution blows-up in finite time when
the nonlinearity becomes too large. It is not possible to perform a similar study in Setup
5.2 because of higher numerical instability.

In Figure 4 we simulate the PDE (1.4) in Setup 5.2 with b = −35. We display the same
information as in the previous setting and we observe that the solution still converges
towards a periodic solution. However, this case is numerically unstable for two main
reasons:

• the solution comes very close to VF and the firing rate can change abruptly from
near 0 to comparatively high values, which requires a very small time step ∆t;

• the solution is pushed far away from VF at high speed and it is thus necessary
to have a large numerical domain, which in turn implies a prohibitive number of
space grid points.
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For these reasons, increasing more the value |b| makes the numerical computation
intractable and the simulation becomes unreliable. The development of a more efficient
scheme based upon the logarithmic rather than quadratic relative entropy will be the
subject of future research. From a biological point of view, taking VF = 0 means that
there is a strong external excitatory input favouring discharges of the neurons at lower
potentials. It can be seen by applying to the equation the rescaling

p̄(v, t) = p(ηv + ζ, t),

with η, ζ > 0, which allows to choose the values of VF and VR at the price of replacing
the flux function −v + bN(t− d) by −v + νext + bN(t− d) for some νext ∈ (−∞,+∞).

5.2 Comparison with the ODE c′ + c = bN(t− d)

We now investigate the decomposition p(v, t) = φ(v−c(t))+R(v, t), where the function
c(t) is the solution to the Ordinary Differential Equation

c′(t) + c(t) = bN(t− d), (5.3)

where N(t) is the firing rate of the PDE (1.4).

Figure 5: Comparison between the maximum point and first moment of the PDE (1.4)
and the ODE (5.3); (A.) Setup 5.1 with b = −45; (B.) Setup 5.2 with b = −35.

In Figure 5 we compare our two indicators of the movement of the PDE solution (the
first moment and the maximum point) to the solution of this ODE. In Figure 5A we do so
in Setup 5.1 with b = −45 and in Figure 5B we do so in Setup 5.2 with b = −35. In both
cases, the ODE solution matches the two indicators, but when the first moment and the
maximum point are distinct (closer to VF ), the ODE matches best the maximum point
of the solution. For this reason, we will henceforth focus on comparisons between the
maximum point of the PDE solution p(v, t) and the value c(t) of the ODE and later of the
DDE.

In Figure 6, we look at the shape of the remainder term R(v, t) for different values of
t. In Setup 5.1 and with b = −45, the remainder term R(v, t) is very small compared to
the size of the solution, as can be seen in Figure 6A. We can also see in Figure 6B that
the Gaussian wave

φ(v − c(t)) =
1√
2πa

e−
(v−c(t))2

2a

is a very good approximation of the solution p(v, t). In Setup 5.2 with b = −35, the
approximation is less precise, as can be seen in Figures 6C and 6D. Note that the

MNA 2 (2022), paper 4.
Page 30/37

https://mna.episciences.org/

https://doi.org/10.46298/mna.7256
https://mna.episciences.org/


Kota Ikeda, Pierre Roux, Delphine Salort, Didier Smets

Figure 6: Comparison between the PDE (1.4) and the ODE (5.3); (A.) The remainder term
R(v, t) = p(v, t)−φ(v− c(t)) at different times in Setup 5.1 with b = −45; (B.) comparison
of p(v, t) and φ(v − c(t)) at different times in Setup 5.1 with b = −45; (C.) The remainder
term R(v, t) at different times in Setup 5.2 with b = −35 (D.) comparison of p(v, t) and
φ(v − c(t)) at different times in Setup 5.2 with b = −35.

Figure 7: Comparison between the maximum point of the PDE (1.4) and the DDE (5.4);
(A.) Setup 5.1 with b = −45; (B.) comparison of the firing rates N(t) and N (c(t)) in Setup
5.1 with b = −45; (C.) Setup 5.2 with b = −35; (D.) comparison of the firing rates N(t)

and N (c(t)) in Setup 5.2 with b = −35.

MNA 2 (2022), paper 4.
Page 31/37

https://mna.episciences.org/

https://doi.org/10.46298/mna.7256
https://mna.episciences.org/


Periodic solutions in the NNLIF model

variance of the solution is less stable in this case than it was in Setup 5.1. This can be
explained by the fact that the maximal value of the firing rate and the range of motions
of the solution are higher. Both of them play a role in Equation (2.12) which describes
the evolution in time of the variance.

5.3 Comparison with the DDE c′ + c = bN (c(t− d))

Let us now consider the solution c(t) of the Delay Differential Equation

c′(t) + c(t) = bN (c(t− d)), N (c) =
1√
2πa

(
VF − c

)
e−

(VF−c)
2

2a . (5.4)

We approximate the solution by treating the ODE part with a Cranck-Nickolson
scheme. This scheme is robust and efficient for linear ODEs and it allows us to compute
the solution on the same time grid as the PDE without relying upon a black-box DDE
solver. If jd is such that d ' tjd , and if we denote cj the approximation of tj , we compute

cj+1 =
1− ∆t

2

1 + ∆t
2

cj +
∆t

1 + ∆t
2

bN (cj−jd),

with ∆t = tj+1 − tj . We take ∆t constant.
In Figure 7, we compare the maximum value of the solution p(v, t) of the PDE to

the solution c(t) of the DDE. Figure 7A is in Setup 5.1 with b = −45 and Figure 7C in
Setup 5.2 with b = −35. Figure 7B and Figure 7D show the comparison between the
PDE firing rate N(t) and the DDE firing rate N (c(t)). We can see that the PDE and the
DDE are close, but a small difference in the value of the time period makes the curves
separate after a short time. The ratio between the periods for the DDE and the PDE can
be computed numerically. In Setup 5.1 with b = −45, the ratio is

TDDE
TPDE

' 3.16

3.09
' 1.023,

which is a 2.3% difference. In Setup 5.2 with b = −35, the ratio is

TDDE
TPDE

' 3.61

3.3.45
' 1.046

which is about 4.6%.

5.4 Numerical exploration of the DDE

The advantage of the DDE over the PDE is that we can simulate it without any trouble
for very large values of |b|. The numerical solutions seem to be reliable even when
b < −106.

In Figure 8 we explore the DDE solutions for different orders of magnitude of b in
Setup 5.1. We can see that the period of the solution increases slowly (logarithmically)
with b. The range of the motion (L∞ norm of c over a period) also increases slowly when
b tends to −∞, but faster than the period.

In Figure 9 we perform the same exploration for different values of b in Setup 5.2. We
can observe again that the period of the oscillations grows logarithmically with respect
to |b|. For this setting, it matches the theoretical information given by Theorem 4.1.
Indeed, this result allows us to predict that there exists CM > 0 such that the period of
the oscillations evolves like

Tb ' CM log

(
− b√

2πa

)
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Figure 8: Simulation of the DDE (5.4) in Setup 5.1 for different values of b; (A.) b = −50;
(B.) b = −100; (C.) b = −1000; (D.) b = −5000.

Figure 9: Simulation of the DDE (5.4) in Setup 5.2 for different values of b; (A.) b = −50;
(B.) b = −100; (C.) b = −1000; (D.) b = −5000.
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Figure 10: The solution uβ(t) of the DDE (5.4) in Setup 5.2 in rescaled variables for
different values of β; (A.) β = 0.26331, which is b = −50; (B.) β = 0.22267, which is
b = −100; (C.) β = 0.14719, which is b = −1000; (D.) β = 0.09340, which is b = −50000.

and the range of the motion evolves like

√
a

(
− b√

2πa

)CM
.

Notice that when we derived these expressions in the previous section we didn’t have
the
√

2πa because we rescaled b linearly in the theoretical results to make the proofs
easier to read.

In order to estimate the value of CM , we apply the rescaling (4.2) to the numerical
solutions of the DDE in Setup 5.2 and we set an immense value for |b|; past 106, the
value stabilises around CM ' 0.8015. In Figure 10, we display the solution of the DDE in
rescaled variables for different values of β = 1/ log( −b√

2πa
). We can see the convergence

of the solution uβ towards the theoretical explicit profile of Theorem 4.1.
Given this approximate value of CM , we compare in Figure 11 the range of the motion

of the solution c(t) of the DDE with the theoretical asymptote
√
a
(
− b√

2πa

)CM
.

6 Conclusion

In this article, we studied the periodic solutions of the delayed NNLIF model. Previous
numerical simulations had indicated that the delayed NNLIF model can give rise to
periodic solutions in the inhibitory case (b < 0), which is a key for the understanding of
fast global oscillations in networks of weakly firing inhibitory neurons. There wasn’t yet
any analytical insight on this topic. In the simulations, these periodic solutions exhibit a
Gaussian shape.

Based upon heuristic arguments, partial results and numerics, we introduced an
associate delay differential equation which depicts the periodic movement of the centre
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Figure 11: Range of c(t) in Setup 5.2 depending on the value of b; comparison with the

asymptote
√
a
(
− b√

2πa

)CM
with the numerical value CM = 0.8015

of the Gaussian wave. We proved rigorously that there exist periodic solutions to this
associate equation.

Since our partial results indicate that the associate equation is valid asymptotically
in b→ −∞, we provided a rigorous result on the asymptotic behaviour of the solutions
of this DDE. To do so, we used an appropriate change of variable and decomposed the
asymptotic dynamics into distinct parts.

In this work, we didn’t address two difficult open questions. First, in order to
complete our partial results on the asymptotic convergence of the periodic solutions
of the complete NNLIF system towards our approximate Gaussian wave, it remains to
prove Conjecture 2.3. This will be the subject of further research and it will require the
development of new techniques. Then, we only portrayed the inhibitory case b < 0. The
results of [16] in the excitatory random discharge model indicate that our method could
apply when b > 0, but in this case the shape of the solutions could be more complex than
a Gaussian wave and there is no possibility to proceed asymptotically.

Note also that we investigated a Hopf bifurcation in terms of the parameter d.
Previous heuristic studies (e.g. [5]) indicate that there is also a Hopf bifurcation in
terms of the parameter b. Another subject for future investigation is the search for
codimension 2 bifurcations in the parameters (b, d) for this delayed differential equation.
The literature about DDEs contains a lot of tools to study bifurcations (see namely [38])
and a full rigorous study of the bifurcations in Equation (5.4) should be possible.
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