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Abstract

The stochastic Hodgkin-Huxley neurons considered in this paper replace time-
constant deterministic input adt of the classical deterministic model by increments
ϑdt + dXt of a stochastic process: X is Ornstein-Uhlenbeck with volatility σ > 0

and back-driving force τ > 0, and we call ϑ > 0 the signal. We have ergodicity and
strong laws of large numbers for various functionals of the process, and characterize
’quiet behaviour’ and ’regular spiking’ as events whose probability depends on the
parameters (τ, σ) and on the signal ϑ. The notions of quiet behaviour and regular
spiking allow for a construction of circuits of interacting stochastic Hodgkin-Huxley
neurons, combining excitation with inhibition according to a block structure along the
circuit, on which self-organized rhythmic oscillations can be observed. .
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1 Introduction

Self-organized rhythmic oscillation in stochastic systems has been studied in different
contexts in biology and physics. Cerf, Dai Pra, Formentin and Tovazzi [3] study spin
systems with nearest neighbour interaction along a circuit which show the following
behaviour. Starting from magnetisation (all spins equal to 1, say) a rather long waiting
time is needed to observe flipping of a first spin, rapidly followed –in virtue of the
structure of the interaction– by spins flipping at successive neighbouring sites along the
circuit which leads to magnetisation of opposite sign (all spins equal to −1, say). Then
again, with roles of signs interchanged, a rather long time is needed to observe a first
spin flipping back, rapidly followed by successive neighbours, and the circuit returns
to its initial state of magnetization. This creates a self-organized rhythmic oscillation
in a Markovian system which is homogeneous in time. The authors can prove that this
oscillation is persistent.
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On the long time behaviour of stochastic Hodgkin-Huxley neurons

Ditlevsen and Löcherbach [4] study circuits of blocks of neurons –where interaction
between successive blocks is of mean-field type– where neurons are modelled through
Hawkes processes, i.e. Poissonian point processes where intensity is a function of
past spiking activity in preceding blocks. Non-Markovian in general, specific memory
kernels however allow an expansion of the structure into Markovian cascades, i.e. finite
sequences of successive Markovian steps corresponding to every block. Now Markovian
ergodicity tools are again at hand, together with mean field limits in large blocks. When
inhibition and excitation is properly balanced, the authors prove that in the limit the
circuit behaves as a deterministic system enjoying the following properties (Theorem 3 in
Section 4 of [4]): i) exactly one equilibrium point exists for the system; ii) this equilibrium
point is unstable, iii) there is a stable periodic orbit for the system; iv) other periodic
orbits may exist, but at most in finite number.

The aim of the present paper is to show that similar patterns of self-organized
rhythmic oscillation can be observed in the spike trains of certain circuits of interacting
stochastic Hodgkin-Huxley neurons, under suitable balance of excitation and inhibition
according to a block structure in the circuit, and under careful determination of suitable
’levels of noise’.

In this view, a first ingredient is to work out, for single stochastic Hodgkin-Huxley
neurons receiving input ϑdt + dXt where X is an Ornstein-Uhlenbeck process with
back-driving force τ > 0 and volatility σ > 0, a notion of ’quiet behaviour’ and a notion of
’regular spiking’ such that, for suitable pairs (τ, σ) characterizing the level of ’noise’ and
with large probability, ’regular spiking’ will be observed for suitably large values ϑ2 of
the signal, and ’quiet behaviour’ for suitably small values ϑ1. Quiet behaviour on a time
interval of certain length will be defined through a comparison with Poisson processes of
very low intensity, and regular spiking in terms of quantiles of interspike times clustering
around their median. Simulations provide evidence that it is not sufficient to choose
the signal alone strong enough (e.g., such that trajectories of a deterministic Hodgkin-
Huxley neuron with constant input would be attracted by a stable orbit, for almost all
initial conditions, in presence of an unstable equilibrium point), or the signal alone
weak enough (e.g., such that trajectories of a deterministic Hodgkin-Huxley neuron
with constant input would be attracted by a stable fixed point, for almost all initial
conditions): the essential condition in stochastic neurons is an interplay, in dependence
on suitable pairs of values ϑ1 < ϑ2 for the signal, between volatility (sufficiently small)
and back-driving force (sufficiently strong).

The second ingredient is to associate to every neuron in the circuit an output process,
solution to an Ornstein-Uhlenbeck type SDE driven by the point process of its spikes,
with positive back-driving force. We have to transform this output into input for a
successor neuron. In a circuit of N = ML neurons, ordered in M blocks containing L
neurons each, and where we count neurons modulo N around the circuit, the output
of neuron i−1 transforms into input for neuron i in the following way: neurons which
occupy first positions in their respective blocks receive bounded inhibitory input, neurons
having their predecessor in the same block (i.e. all others) receive bounded excitatory
input. With suitable choice of bounded monotone functions Φinh (decreasing) and Φexc

(increasing), writing U (j) for the output produced by neuron j, the input which neuron i
receives is thus

Φinh(U (i−1)) if i = 1 modulo L, Φexc(U (i−1)) else

(in particular, neuron 1 receives input Φinh(U (N)), counting modulo N around the cir-
cuit). Suitably balanced and under the condition that the number M of blocks is odd,
simulations make appear oscillating patterns of spiking activity around the circuit in
the sense that blocks of neurons flip from regular spiking regime into quiet regime and
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from quiet regime into regular spiking regime. This creates a slow rhythmic oscillation
of activity patterns around the circuit which seems persistent. Simulation results as
represented in Figures 7 and 8 illustrate this phenomenon, already for small values of L
and M , and show that rhythmic oscillation establishes itself rather rapidly.

We have no proof that the observed slow rhythmic oscillation of spiking activity
around the circuit is indeed persistent. A heuristic argument however might be as
follows. Think of a deterministic system of dimension N = LM where variables t→ xj(t)

represent in some way a spiking activity of neuron j as a function of time, and where
counting modulo N the interaction scheme is of type

dxi
dt

(t) =

{
−cxi(t)− f(xi−1(t)) if i = 1 modulo L

−cxi(t) + f(xi−1(t)) else

with f some smooth function which is close to the truncation function x→ (x∨−1)∧1, and
with c > 0 some constant. Under the condition that i) M is odd and ii) c is small enough,
this system evolves on a finite number of periodic orbits, and at least one periodic orbit is
stable. This is again Theorem 3 in section 4 of [4], the system t→ (x1(t), . . . , xN (t)) being
a simplified version of the deterministic limit system considered there. In simulations
under random initial conditions, the slow rhythmic oscillation of activity patterns in the
circuit of stochastic Hodgkin-Huxley neurons constructed above looks very much like
those in the deterministic system t→ (x1(t), . . . , xN (t)).

The main effort of the present paper is on modelization and balance, a key ingredient
being a rigorous definition of notions such as quiet behaviour and regular spiking in
stochastic Hodgkin-Huxley neurons with constant signal. Proofs that the oscillating
behaviour observed in finite circuits of stochastic Hodgkin-Huxley neurons is indeed per-
sistent (certainly perturbed by randomness from time to time but always re-establishing
itself rather rapidly) remains an open and challenging problem.

The present paper is organized as follows. At the core of the paper, Section 6 is
devoted to the construction of circuits which exhibit self-organized oscillation. This
section does not contain proofs. As a preparation for Section 6, all other sections except
the first one (which recalls some known facts for classical deterministic Hodgkin-Huxley
neurons with constant input) focus on the single stochastic Hodgkin-Huxley neuron as a
Harris recurrent strong Markov process.

In particular, Section 3 introduces the stochastic Hodgkin-Huxley neuron with con-
stant signal, sketches its ergodicity properties and states some strong laws of large
numbers, in particular for empirical distribution functions of spiking patterns. Proofs
based on artificially defined life cycles through Nummelin splitting (methods as in
Höpfner, Löcherbach and Thieullen [11, 12, 13]) are collected in an appendix Section 7.
The process of ’output’ of a stochastic neuron, key tool in view of modelization of inter-
actions along circuits, is defined in Section 3.3. Quantifying a comparison with Poisson
processes of very low intensity, Section 4 defines quiet behaviour of a single stochastic
Hodgkin-Huxley neuron with constant signal as an event whose probability depends on
the noise level and the value of the signal. Section 5 defines regular spiking in terms
of quantiles of interspike times which cluster sufficiently close to their median. Conse-
quences for the output process (based on two conjectures –which we believe realistic–
on concentration properties of the limit of empirical distribution function for interspike
times) are discussed in an appendix Section 8.

The limit theorems of Section 3 and the notions in Sections 4–5 form the basis for the
construction of circuits of interacting stochastic Hodgkin-Huxley neurons in Section 6,
whereas Appendices 7–8 may be left for further reading.

R code underlying our simulations in the present paper is provided under http:
//modeldb.yale.edu/267611.
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On the long time behaviour of stochastic Hodgkin-Huxley neurons

2 Deterministic Hodgkin-Huxley model with constant rate of in-
put

Hodgkin-Huxley models [6] play an important role in neuroscience and are consid-
ered as realistic models for the spiking behaviour of neurons. For an overview see
Izhikevich [15] and Ermentrout and Terman [5]. The classical deterministic model with
constant rate of input is a 4-dimensional dynamical system with variables (V, n,m, h)

dVt = adt− F (Vt, nt,mt, ht)dt

dnt = [αn(Vt)(1− nt)− βn(Vt)nt]dt

dmt = [αm(Vt)(1−mt)− βm(Vt)mt]dt

dht = [αh(Vt)(1− ht)− βh(Vt)ht]dt

(2.1)

where a > 0 is a constant. We define the functions F and αj , βj , j ∈ {n,m, h}, as in
Izhikevich [15, pp. 37–38] (different choices for the constants exist in the literature):

F (v, n,m, h) := 36n4(v + 12) + 120m3h(v − 120) + 0.3(v − 10.6), (2.2)

αn(v) =
0.1− 0.01v

exp(1− 0.1v)− 1
βn(v) = 0.125 exp(−v/80),

αm(v) =
2.5− 0.1v

exp(2.5− 0.1v)− 1
βm(v) = 4 exp(−v/18), (2.3)

αh(v) = 0.07 exp(−v/20) βh(v) =
1

exp(3− 0.1v) + 1
.

The variable V takes values in R and models the membrane potential in the single
neuron. The variables n, m, h are termed gating variables (or internal variables) and
take values in [0, 1]. The state space for this system is E4 := R × [0, 1]3. In the sequel,
for reasons which will appear in Section 3, we shall speak of a > 0 in (2.1) as a ’signal’
and try to avoid the term ’input rate’ established in the literature on deterministic
Hodgkin-Huxley models.

Depending on the value of the signal a > 0, the following behaviour of the determinis-
tic dynamical system is known, see Ermentrout and Terman [5, pp. 63–66]. As there, see
(2.4) and (2.5) below, (2.1) admits a unique equilibrium for every a > 0. On some interval
(0, a1) this equilibrium point is stable. There is a bistability interval Ibs = (a1, a2) on
which a stable orbit coexists with a stable equilibrium point, and an interval (a2, a3) on
which the orbit is stable whereas the equilibrium point is unstable. As a approaches from
below the right endpoint a3 of the last interval, orbits are collapsing towards equilibrium;
for a > a3 the equilibrium point is again stable. Here 0 < a1 < a2 < a3 <∞ are suitably
determined endpoints for intervals. Equilibrium points and orbits depend on the value of
a. For biologically relevant values of the signal, evolution of the system along an orbit
represents a remarkably fast ’large excursion’ of all variables of the system, in particular
of the membrane potential V , and is called a spike. Throughout the paper, we exclude
unrealistically large values of the signal.

In simulations –Euler schemes with time step 0.001 where the starting point is selected
at random, according to the uniform law on (−12, 120)×(0, 1)3– the equilibrium point
appears to be globally attractive on (0, a1). The orbit appears to be globally attractive on
(a2, a3). On the bistability interval Ibs = (a1, a2), the behaviour of the system depends on
the choice of the starting value: simulated trajectories either go to the equilibrium point,
or are attracted by the orbit.1

1Rinzel and Miller [22] show that a branch of unstable periodic orbits exists on the bistability interval,
bifurcating below a2 = sup Ibs and rejoining the stable orbits at a1 = inf Ibs (in the sense of decreasing values
of a). However, such orbits will not be seen in simulations with randomly chosen starting point.
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For our choice of the constants in equations (2.2)–(2.3) –those of Izhikevich [15],
slightly different from both Ermentrout and Terman [5] and Rinzel and Miller [22]–
simulations (here we refer to those2 done by [14]) locate inf Ibs = a1 between 5.24 and
5.25, and sup Ibs = a2 close to 8.4 . The value of a3 is close to 163.5 and thus (given
the shape of orbits when a approaches a3 from below) far beyond biological relevance.
Already at a = 5.5, about 80% of all trajectories with randomly selected starting point
are attracted to the orbit, this percentage being increasing in a ∈ Ibs.

Equilibria for the deterministic Hodgkin-Huxley system (2.1) can be determined as
follows ([15, pp. 38–39], and [5]). For a fixed value v of the membrane potential, write

(n∞(v),m∞(v), h∞(v)) :=

(
αn

αn + βn
(v),

αm
αm + βm

(v),
αh

αh + βh
(v)

)
(2.4)

and define F∞ : R→ R by

F∞(v) := F (v, n∞(v),m∞(v), h∞(v)) . (2.5)

Numerical evidence (see also the remarks in [5, pp. 64–65]) shows that F∞ is strictly
increasing on compacts. Thus, for signal a > 0 in (2.1)–(2.3), solving

a
!
= F∞(v{a})

we determine v{a} and thus the equilibrium point(
v{a}, n{a},m{a}, h{a}

)
:=
(
v{a}, n∞(v{a}),m∞(v{a}), h∞(v{a})

)
(2.6)

of the deterministic system (2.1) with signal a > 0.

3 Stochastic Hodgkin-Huxley with constant signal

Prepare an Ornstein-Uhlenbeck process with back-driving force τ > 0 and volatility
σ > 0

dXt = −τXtdt+ σdWt. (3.1)

2In unpublished work [14], Hummel simulated 1000 trajectories with randomly selected starting point for
each value of the signal a under consideration. Starting values were sampled independently from the uniform
law on (−12, 120)×(0, 1)3. As a function of a (given in the first row of the tables below), the following relative
number (given in the second row) of trajectories was found to converge to an orbit. First, for a in [8.0, 9.0),

8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9
0.986 0.991 0.993 0.998 1.000 1.000 1.000 1.000 1.000 1.000

which determines an approximate location ≈ 8.4 of the right endpoint of Ibs. Then, considering values of a in
[5.0, 6.0)

5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9
0.000 0.000 0.000 0.751 0.777 0.803 0.821 0.835 0.847 0.863

and looking in more detail into the interval [5.2, 5.3)

5.20 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29
0.000 0.000 0.000 0.000 0.000 0.687 0.726 0.736 0.743 0.748

the left endpoint of Ibs is found between 5.24 and 5.25; a closer look into [5.24, 5.25)

5.240 5.241 5.242 5.243 5.244 5.245 5.246 5.247 5.248 5.249
0.000 0.012 0.073 0.134 0.214 0.294 0.368 0.435 0.547 0.653

shows that inf Ibs is in fact very close to 5.24. All values above are quoted from [14], p. 10 there.
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On the long time behaviour of stochastic Hodgkin-Huxley neurons

Figure 1: Membrane potential in a simulated stochastic Hodgkin-Huxley neuron X(ϑ,τ,σ).
The value of the signal is ϑ = 4, and the parameters for the Ornstein Uhlenbeck process
X are τ = 0.5 and σ = 2.5. Initial conditions are selected at random, according to the
stationary law of X and according to the uniform law on (−12, 120)×(0, 1)3 for (V, n,m, h).
The simulation was done using an Euler scheme with equidistant steps 0.001. Under
signal a = ϑ = 4, a deterministic Hodgkin-Huxley neuron (2.1) would be attracted to the
stable equilibrium point (2.6). In the stochastic Hodgkin-Huxley neuron (3.2)–(3.4) of
Section 3, ’noise’ – in the combination of parameters considered here– turns out to be
strong enough to create frequent spikes. Here and in all graphics below, no attempt is
made towards ’biologically relevant scaling’ of the time axis.

In order to feed noise into the system (2.1), we replace adt in the first equation of the
deterministic model (2.1) by increments dYt of a stochastic process

Yt = ϑt+Xt , t ≥ 0 (3.2)

with some constant ϑ > 0, unique strong solution to3 the stochastic differential equation

dYt = ϑ(1 + τt)dt− τYtdt+ σdWt. (3.3)

Together with equation (3.2) or (3.3), the system
dVt = dYt − F (Vt, nt,mt, ht)dt

dnt = [αn(Vt)(1− nt)− βn(Vt)nt]dt

dmt = [αm(Vt)(1−mt)− βm(Vt)mt]dt

dht = [αh(Vt)(1− ht)− βh(Vt)ht]dt

(3.4)

3SDE (3.3) for the accumulated input (Yt)t has remarkable statistical consequences: in the stochastic
Hodgkin-Huxley model with constant signal, knowingX0 and observing the membrane potential V continuously
in time, the signal ϑ can be estimated at a better rate than the back-driving force τ ([8], corollary 2 in section
4).
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defines a stochastic Hodgkin-Huxley model. We speak of ϑ > 0 as the ’signal’ encoded
in the system. In contrast to the deterministic case, the behaviour of the biological
variables (3.4) in the stochastic system is not only governed by the value of the signal
ϑ, but also depends on the level of ’noise’, i.e. on the values of the volatility σ and
the back-driving force τ in the Ornstein-Uhlenbeck process (3.1). We thus consider the
5-dimensional strong Markov process

X(ϑ,τ,σ) = (X
(ϑ,τ,σ)
t )t≥0 , X

(ϑ,τ,σ)
t := (Vt, nt,mt, ht, Xt)t≥0 (3.5)

having state space E := R× [0, 1]3×R. E is endowed with its Borel-σ-field E . The process
(3.5) is homogeneous in time, with encoded signal ϑ and semigroup

(P
(ϑ,τ,σ)
t )t≥0

of transition probabilities on (E, E). We suppress superscripts when the context is clear.
A biological interpretation of the system (3.5) is as follows. Assume that the neuron

which we consider is part of a large and active network. Then a structure dYt = ϑdt+dXt

of input reflects superposition of some global level ϑ > 0 of excitation in the network with
noise in the single neuron. Noise in the single neuron arises as a result of accumulation
and decay of a large number of small postsynaptic charges, caused by incoming spikes
–registered at synapses, excitatory or inhibitory, present in large number and in complex
spatial distribution along the dendritic tree of the neuron, then undergoing decay and
finally being summed up– which the neuron receives from a large number of other
neurons active within the same network.

Throughout the paper, we exclude by convention unrealistically large values of the
signal ϑ: orbits in a deterministic system with same value of the signal always should
admit a biological interpretation in terms of a spike. Even if we write ’ϑ > 0’ below, this
is the same caveat as in Section 2.

3.1 Positive Harris recurrence

We discuss ergodicity properties of systems (3.5). For stochastic Hodgkin-Huxley
models encoding signals which are deterministic periodic functions, positive Harris
recurrence is established in Höpfner, Löcherbach and Thieullen [11, 13], see also [12],
and including more general settings in Holbach [7]. Our case of constant signal ϑ > 0

is then essentially a corollary. For background on Harris recurrence see Nummelin
[19, 20], Azema, Duflo and Revuz [1], Revuz and Yor [21], Höpfner and Löcherbach [10].

Theorem 3.1. The following holds for every ϑ > 0, τ > 0, σ > 0 :

a) The process (X
(ϑ,τ,σ)
t )t≥0 is positive Harris recurrent.

b) For arbitrary step size 0 < T < ∞, grid chains (X
(ϑ,τ,σ)
kT )k∈N0 are positive Harris

recurrent.

c) For arbitrary step size 0 < T <∞, chains of path segments

(X
(ϑ,τ,σ)
[kT,(k+1)T ])k∈N0 , X

(ϑ,τ,σ)
[kT,(k+1)T ] := (X

(ϑ,τ,σ)
t )kT≤t≤(k+1)T

with values in the space of continuous functions C([0, T ], E) are positive Harris
recurrent.

d) For every 0 < T < ∞, there is some ’small set’ C ∈ E of strictly positive invariant
measure, some probability law ν on (E, E), and some α ∈ (0, 1) such that Nummelin’s
minorization condition holds:

P
(ϑ,τ,σ)
T (x, dy) ≥ α1C(x)ν(dy) for all x, y in E.
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On the long time behaviour of stochastic Hodgkin-Huxley neurons

Proof. Fix (ϑ, τ, σ) and write the system (3.5) as{
dVt = dXt − [F − ϑ](Vt, nt,mt, ht)dt

djt = [αj(Vt)(1− jt)− βj(Vt)jt]dt , j ∈ {n,m, h}. (3.6)

Then (3.6) amounts to a simplified variant of the OU-type Hodgkin-Huxley systems
investigated in [11, 13]: we can replace the function F there by F̃ := F−ϑ, a change
which does not affect the proofs in [11] and [13], and then encode S̃ ≡ 0 in place of
the deterministic periodic function into the drift of the diffusion process in [11] and
[13]. This allows to view any 0 < T <∞ as a period for our stochastic system (3.5); the
coefficients remain real analytic.

Now a) and b) correspond to Theorems 2.7 and 2.2 in [11]. The lower bound d)
corresponds to Theorem 4 and Corollary 1 (together with Sections 6.3 –6.5) in [13], or to
step 1) in the proof to Theorem 2.9 in [11]. Assertion c) on path segments follows from
b) as in Theorem 2.1 of Höpfner and Kutoyants [9].

Let Q(ϑ,τ,σ)
x denote the law of the process (X

(ϑ,τ,σ)
t )t≥0 starting from x ∈ E, a proba-

bility measure on the canonical path space (C, C) of continuous functions [0,∞)→ E. We
equip (C, C) with the right-continuous filtration G = (Gt)t≥0 generated by the canonical
process. This allows to view the single neuron X(ϑ,τ,σ) in (3.5) as a canonical process on
a canonical path space under Q(ϑ,τ,σ)

x . As usual, ’almost surely’ means Q(ϑ,τ,σ)
x -almost

surely for every x ∈ E.
Positive Harris recurrence Theorem 3.1 a)+b) implies that there exists a unique

invariant probability µ(ϑ,τ,σ) on the state space (E, E), that sets of positive invariant
probability are visited infinitely often (for events F ∈ E and arbitrary 0 < T <∞,

if µ(ϑ,τ,σ)(F ) > 0 :

∫ ∞
0

1F (X(ϑ,τ,σ)
s )ds =∞ ,

∞∑
k=1

1F (X
(ϑ,τ,σ)
kT ) =∞

almost surely), and implies strong laws of large numbers: for functions h : E → R which
belong to L1(µ(ϑ,τ,σ)), limits

1

t

∫ t

0

h(X(ϑ,τ,σ)
s )ds −→

∫
E

hdµ(ϑ,τ,σ) , t→∞ (3.7)

and, for every 0 < T <∞ fixed,

1

n

n∑
k=1

h(X
(ϑ,τ,σ)
kT ) −→

∫
E

hdµ(ϑ,τ,σ) , n→∞ (3.8)

exist almost surely. Consider also Q(ϑ,τ,σ)
x restricted to (CT , CT ) where CT is the path

space of continuous functions [0, T ]→ R, and write

Q(ϑ,τ,σ)
µ := Q

(ϑ,τ,σ)

µ(ϑ,τ,σ) =

∫
E

µ(ϑ,τ,σ)(dx)Q(ϑ,τ,σ)
x

for the probability law on (C, C) or on (CT , CT ) under which the canonical process X on
(C, C) or on (CT , CT ) is a stationary process. If for some T a function g : CT → R belongs

to L1(Q
(ϑ,τ,σ)
µ ), then

1

n

n−1∑
k=0

g
(
X

(ϑ,τ,σ)
[kT,(k+1)T ]

)
−→

∫
CT

gdQ(ϑ,τ,σ)
µ , n→∞ (3.9)

holds almost surely, by positive Harris recurrence Theorem 3.1 c) for path segment
chains.
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3.2 Spike times and spiking patterns

In a stochastic Hodgkin-Huxley neuron (3.5), we define ’beginning’ of a spike as the
time of upcrossing of the m-variable over the h-variable, and ’end’ of the same spike as
the time of re-downcrossing of m under h, as in (2.15) in [11]: the membrane potential
V reaches its maximum on this time interval almost immediately after the upcrossing of
m over h. We define the spike time as the time of the beginning of a spike (the time at
which the membrane potential attains a local maximum does not have the structure of a
stopping time). Then the spike train emitted by the stochastic Hodgkin-Huxley neuron
(3.5) is the sequence (τj)j≥1 of G-stopping times

τj := inf{t > σj−1 : mt > ht}, σj := inf{t > τj + δ0 : mt < ht}, j ≥ 1, σ0 = τ0 = 0 (3.10)

with convention inf{∅} =∞, and with δ0 > 0 arbitrarily small but fixed. The sequence
(τj)j is strictly increasing and tends to∞; we associate the counting process

N = (Nt)t≥0 , Nt :=
∑
j≥1

1(0,t](τj). (3.11)

Interspike times (τj−τj−1)j≥1 have no reason to be independent or identically distributed,
and N has no reason to be a Poisson process (in particular, for every t, the random
variable Nt is bounded by construction). This does not exclude the possibility that on
compact time intervals, under certain parameter configurations, N with large probability
may look quite similar to a Poisson process.

Proposition 3.2.

a) For 0 < T <∞ fixed, almost surely within the family of time intervals {[kT, (k+1)T ] :

k ∈ N0}, an infinite number of intervals will contain spikes and an infinite number of
intervals will remain spikeless.

b) The empirical distribution functions Ĥn associated to the first n observed interspike
times

τ`+1−τ` , 1 ≤ ` ≤ n

converge almost surely as n → ∞, uniformly on [0,∞), to the distribution function
H(ϑ,τ,σ) of some probability law which is concentrated on (0,∞).

Proof. As in the proof of Theorem 3.1, a) and b) correspond to Theorems 2.8 and 2.9 in
[11].

In the stationary regime, the Laplace transform of the number of spikes observed on
path segments of length T

ψ
(ϑ,τ,σ)
T (λ) := E(ϑ,τ,σ)

µ

(
e−λNT

)
, λ ≥ 0 (3.12)

and the probability that a path segment of length T contains less than v spikes

F
(ϑ,τ,σ)
T (v) := Q(ϑ,τ,σ)

µ (NT ≤ v) , v ≥ 0 (3.13)

are of interest for statistical purposes. Whereas there is no hope to get explicit ex-
pressions for the left hand sides of (3.12) or (3.13), Harris recurrence provides us with
empirical Laplace transforms and empirical distribution functions.
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Proposition 3.3. Under (ϑ, τ, σ), for 0 < T <∞ fixed,

a) the functions

ψ̂n,T (λ) :=
1

n

n∑
k=1

e−λ(NkT−N(k−1)T ) , λ ≥ 0 , n ∈ N

converge uniformly on [0,∞), almost surely as n → ∞, to the Laplace transform

ψ
(ϑ,τ,σ)
T in (3.12);

b) the functions

F̂n,T (v) :=
1

n

n∑
k=1

1{NkT−N(k−1)T≤v} , v ≥ 0 , n ∈ N

converge uniformly on [0,∞), almost surely as n → ∞, to the distribution function

F
(ϑ,τ,σ)
T in (3.13).

Proof. For T , v and λ fixed, both e−λ(NkT−N(k−1)T ) or 1{NkT−N(k−1)T≤v} are bounded

functionals h
(
X[(k−1)T,kT ]

)
of paths segments, and pointwise convergence almost surely

holds in virtue of Theorem 3.1 c) and (3.9):

1

n

n∑
k=1

h
(
X[(k−1)T,kT ]

)
−→ E(ϑ,τ,σ)

µ

(
h(X[0,T ])

)
, n→∞.

The limit functions F (ϑ,τ,σ)
T of (3.13) and ψ(ϑ,τ,σ)

T of (3.12) are monotonous and bounded,
so uniformity on [0,∞) follows as in the classical proof of the Glivenko-Cantelli Theorem.

Proposition 3.4. Under (ϑ, τ, σ), as t→∞, the limit

lim
t→∞

1

t
Nt = E(ϑ,τ,σ)

µ (N1)

exists almost surely.

Proof. Fix T := 1. View NkT − N(k−1)T as a functional h
(
X[(k−1)T,kT ]

)
of the paths

segments; by construction in (3.10), NkT −N(k−1)T being bounded by 1
T δ0, this functional

h : CT → [0,∞) is bounded. Theorem 3.1 c) and (3.9) give almost sure convergence

1

n
Nn =

1

n

n∑
k=1

h
(
X[k−1,k]

)
−→ E(ϑ,τ,σ)

µ (N1)

under (ϑ, τ, σ), and with btc ≤ t ≤ btc+ 1 the assertion follows.

The following extension of Proposition 3.2 b) allows to consider spiking patterns.

Theorem 3.5. For every L ∈ N, empirical distribution functions Ĝm : [0,∞)L → [0, 1]

associated to the first m observed L-tuples of successive interspike times

(τn+1 − τn, . . . , τn+L − τn+L−1) , n ∈ N (3.14)

converge almost surely as m → ∞, uniformly on [0,∞)L, to the distribution function

G
(ϑ,τ,σ)
µ of some probability law concentrated on (0,∞)L.

The proof, based on renewal techniques which extend the proof of Proposition 3.2 b)
above (i.e. the proof of Theorem 2.9 in [11]), is given together with some complements in
the appendix Section 7. The probability law G

(ϑ,τ,σ)
µ in Theorem 3.5 governs the variety

of typical patterns on (0,∞)L which will appear in the long run in L-tuples of successive
interspike times.
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3.3 Output of a stochastic Hodgkin-Huxley neuron

The counting process N in (3.11) allows to measure the accumulated activity of the
neuron X(ϑ,τ,σ) in (3.5) by a stochastic process U which we call ’output’

U = (Ut)t≥0 , dUt = −c1Ut−dt+ dNt , U0 = 0 (3.15)

where c1 is some constant, strictly positive and finite. We have

Ut − Us = Use
−c1(t−s) +

∫
(s,t]

e−c1(t−v)dNv = Use
−c1(t−s) +

∑
j≥1

1(s,t](τj)e
−c1(t−τj)

for 0 ≤ s < t, and in particular at the spike times

Uτ` =
∑̀
j=1

e−c1(τ`−τj) , Uτj− = Uτj−1
e−c1(τj−τj−1) , Uτk = Uτk− + 1. (3.16)

Properties of the output process in the long run can be discussed as an application of
Theorem 3.5.

Proposition 3.6. For ε > 0 choose L large enough so that
∑
`>L e

−c1δ0` < ε. Then pairs(
Uτn+L

, U(τn+L+1)−
)

, n ∈ N (3.17)

admit approximations

(
Vn, V

−
n+1

)
: Vn :=

n+L∑
j=n

e−c1(τn+L−τj) , V −n+1 :=

n+L∑
j=n

e−c1(τn+L+1−τj) (3.18)

with the following properties: we have bounds uniformly in n

sup
{
|Uτn+L

− Vn|, |U(τn+L+1)− − V −n+1| : n ∈ N
}
< ε,

and empirical distribution functions associated to the first m pairs out of (3.18) converge
almost surely as m → ∞, uniformly on [0,∞)2, to the distribution function of some
probability law which is concentrated on (0,∞)2.

The proof of Proposition 3.6 is also shifted to the appendix Section 7. Note that in
order to obtain small values of ε in Proposition 3.6 we have to require huge values of
L, so the result seems more of theoretical than of practical interest. With the same
technique of proof, the result can be extended to (J + 1)-tuples((

Uτn+j+L
, U(τn+j+L+1)−

)
0≤j≤J

)
, n ∈ N (3.19)

for J ∈ N arbitrary but fixed.

4 Quiet behaviour of stochastic neurons

In a deterministic Hodgkin-Huxley neuron, sufficiently small values of the signal ϑ
–smaller than inf(Ibs), see Section 2– grant that trajectories are attracted to the stable
equilibrium point (randomly chosen initial conditions). In a stochastic Hodgkin-Huxley
neuron, by Proposition 3.2, spikes will occur almost surely also for small values of the
signal ϑ. Simulations under ϑ < inf(Ibs) show that the spiking behaviour –in form of
single isolated spikes or small groups of spikes– depends on some interplay between the
volatility σ and the back-driving force τ .

In Definition 4.1 below, we shall define quiet behaviour of stochastic Hodgkin-Huxley
neurons as an event on which spike trains observed over a long time interval seem close
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Figure 2: Simulated trajectory of a stochastic Hodgkin-Huxley neuron X(ϑ,τ,σ). The
signal is ϑ = 6. The parameters for the Ornstein Uhlenbeck process X are τ = 0.7 and
σ = 0.83666. The parameter in the output process U is c1 = 0.02. Initial conditions are
selected at random, according to the stationary law of X and according to the uniform
law on (−12, 120)×(0, 1)3 for (V, n,m, h). The starting value for the output process U is 0.
The simulation was done using an Euler scheme with equidistant steps 0.001.

to a Poisson process with low intensity. The process N counting spikes has been defined
in (3.10).

To random variables ξ1, . . . , ξn, N0-valued but which in general we do not assume
independent or identically distributed, we associate an empirical distribution function
F̂n(v) = 1

n

∑n
j=1 1[0,v](ξj), an empirical Laplace transform ψ̂n(v) := 1

n

∑n
j=1 e

−vξj , v ≥ 0,

and an empirical mean ξ̄n := 1
n

∑n
j=1 ξj .

For Poisson random variables ξ with parameter λ > 0, we write Fλ(v) = Pλ(ξ ≤ v) for
the distribution function (DF), v ≥ 0, φλ(v) = Eλ(e−vξ) for the Laplace transform (LT),
and

q̄(α, λ) := min{n ∈ N0 : Pλ(ξ > n) ≤ α} (4.1)

for upper α-quantiles. Write Pnλ for the joint law of i.i.d. Poisson random variables

(ξ1, . . . , ξn) with parameter λ > 0, F̂n for the empirical distribution function, φ̂n for
the empirical distribution function, and ξ̄n for the empirical mean. In order to obtain
quantified benchmarks for comparison with other data sets we shall use laws

L
(∫

I

∣∣∣F̂n(v)− Fξ̄n(v)
∣∣∣ dv | Pnλ) , L

(∫
I

∣∣∣φ̂n(v)− φξ̄n(v)
∣∣∣ dv | Pnλ) (4.2)

where I is some closed interval in [0,∞) whose left endpoint is 0, and their upper
α-quantiles

q̄DF (α;λ, n, I) , q̄LT (α;λ, n, I). (4.3)
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We shall determine laws (4.2) and quantiles (4.3) empirically using simulations.
On the basis of ergodicity established in Section 3 and motivated in particular by

(3.9) and Theorem 3.1 c) applied to path segments of sufficient length T0, the following
definition counts spikes on successive segments

X1K(k−1)T0,kT0K , 1 ≤ k ≤ K

where K is assumed to be large. We call a stochastic Hodgkin-Huxley neuron quiet when
i) and ii) hold:

i) a Poisson-goodness of fit test does not reject a Poisson hypothesis with estimated
parameter;

ii) the estimated parameter is small enough.

Definition 4.1. Assume that a stochastic Hodgkin-Huxley neuron (3.5) with parameters
(ϑ, τ, σ) has been observed over a long time interval [0,KT0], K ∈ N. For K and T0 large
enough, put

T1 := KT0 , λ̃ :=
1

T1
NT1 , ξk := NkT0 −N(k−1)T0

, 1 ≤ k ≤ K (4.4)

and fix critical values
λc := 0.0005 , αc := 0.0005 (4.5)

for hypothetical Poisson intensities and quantiles. Let Q(T0,K) denote the event in GT1

on which either: spikes are extremely rare, i.e.

NT1 ≤ 2 and λ̃ ≤ 0.0001, (4.6)

or: with quantiles (4.1), at most

NT1
≤ q̄ (0.05, λcT1) (4.7)

spikes occur, and their location on the time axis is such that increments ξ1, . . . , ξK in
(4.4) are in good fit with i.i.d. Poisson random variables with estimated parameter λ̃T0,
in the following sense: with I := [0, 5.5] and with F̂K and ψ̂K defined from ξ1, . . . , ξK we
use the statistics

∆DF (T0,K) :=

∫
I

∣∣∣F̂K(v)− Fλ̃T0
(v)
∣∣∣ dv , ∆LT (T0,K) :=

∫
I

∣∣∣ψ̂K(v)− φλ̃T0
(v)
∣∣∣ dv

(GT1
-measurable) and require, with critical values (4.5) and quantiles (4.3), that the

following holds:

∆DF (T0,K) ≤ cDF with cDF := q̄DF (αc;λcT0,K, I) , (4.8)

∆LT (T0,K) ≤ cLT with cLT := q̄LT (αc;λcT0,K, I) . (4.9)

On events Q(T0,K) ∈ GT1
we call the stochastic neuron X in (3.5) quiet.

In the setting of Section 3, spike trains are never exactly Poisson (interspike times
being > δ0 by construction, the number Nt of spikes up to time t is bounded by 1

δ0
t, for

every t ≥ 0). Under certain parameter configurations, spike trains can however be quite
similar to what a Poisson process would show, in particular when very few spikes, all
isolated ones, are observed over a long time interval (in contrast to this, see figures 1
and 2). In Definition 4.1, the criterion (4.7) corresponds to a nonrandomized Poisson test
for the hypothesis ’unknown intensity is ≤ λc’ versus ’> λc’ which in a Poisson model
would be uniformly most powerful for its level ([23], p. 210), and criteria (4.8) and (4.9)
correspond to a Poisson goodness-of-fit test at the critical value λc: if N were Poisson
with intensity λc, the random variables ∆DF (T0,K) and ∆LT (T0,K) would exceed the
critical values in (4.8) and (4.9) in only 5 out of 104 cases, on average.
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Example 4.2. We use a simulation study to investigate the spiking behaviour of stochas-
tic Hodgkin-Huxley neurons (3.5) with signal ϑ = 4, and to illustrate the influence of
the volatility σ and the back-driving force τ in the Ornstein-Uhlenbeck process (3.1) on
the spiking behaviour. Recall from Section 2 that under random initial conditions, a
deterministic neuron with signal ϑ = 4 would have its trajectories attracted to the stable
equilibrium

(
v{ϑ}, n{ϑ},m{ϑ}, h{ϑ}

)
in (2.6), and trapped there.

Our simulations of trajectories for the stochastic neuron (Euler schemes with time
step 0.001) mimick stationary behaviour by omitting, after random initial conditions, a
sufficiently long initial piece of trajectory (of length 1000): its terminal state will serve as
starting point for a trajectory of total length T1 = 25000, cut down into K = 100 segments
of length T0 = 250, which we evaluate statistically.

Counting spikes on the K = 100 path segments of length T0 = 250 we define as in
(4.4)

T1 := KT0 , λ̃ :=
1

T1
NT1 , ξk := NkT0 −N(k−1)T0

, 1 ≤ k ≤ K

and use the criteria and critical values of Definition 4.1. For every parameter configura-
tion (ϑ ≡ 4, τ, σ) which we consider, we do 10 simulation runs over total time T1 = 25000.
This is sufficient to obtain strong evidence – see the tables in 3) below– for the following:

i) the probability Qµ (Q(T0,K)) = Q
(ϑ=4,τ,σ)
µ (Q(T0,K)) that a simulation run of length

T1 will turn out to be quiet in the sense of Definition 4.1 is a function of τ and σ;

ii) for fixed value of the volatility σ, sufficiently large values of the back-driving force
τ (the meaning of ’large’ depending on σ) make sure that the neuron will be quiet
with probability close to 1.

We explain this in more detail in the following steps 1)–4).

1) With λc = 0.0005 from (4.5), the upper 5%-quantile (4.7) of the Poisson law PλcT1

equals
q̄ (0.05, λcT1) = 19.

With I = [0, 5.5] and αc = 0.0005 as in (4.5), we determine approximate quantiles for
criteria (4.8) and (4.9) as follows. To approximate the law under PKλcT0

of the random
variables ∫

I

∣∣∣F̂K(v)− Fξ̄K (v)
∣∣∣ dv ,

∫
I

∣∣∣φ̂K(v)− φξ̄K (v)
∣∣∣ dv (4.10)

we draw i.i.d. Poisson random variables ξ1, . . . , ξK with parameter λcT0 and calculate
the integrals (4.10) for these. After a large number of 4 · 104 replications, empirical
distribution functions for the objects in (4.10) are sufficiently good to determine
upper αc-quantiles approximately:

q̄DF (αc;λcT0,K, I) ≈ 0.075 , q̄LT (αc;λcT0,K, I) ≈ 0.15. (4.11)

Approximations (4.11) yield critical values cDF and cLT for conditions (4.8) and (4.9).

2) In every simulation run, with ξ1, . . . , ξK and λ̃ given by (4.4), we have

λ̃T0 =
NT1

T1
T0 =

1

K
NT1

=
1

K

K∑
j=1

ξj = ξ̄K

and calculate from ξ1, . . . , ξK the integrals

∆DF (T0,K) :=

∫
I

∣∣∣F̂K(v)− Fλ̃T0
(v)
∣∣∣ dv , ∆LT (T0,K) :=

∫
I

∣∣∣ψ̂K(v)− φλ̃T0
(v)
∣∣∣ dv.
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We check conditions (4.8) and (4.9) in combination with either (4.6) or (4.7). When
the full set of conditions is satisfied, the simulation run is counted as quiet in the
sense of Definition 4.1. We repeat 10 runs under every parameter configuration which
we consider.

3) With signal ϑ = 4, we vary the volatility σ and the back-driving force τ . As a general
feature, when σ is fixed, spikes turn out to be rare under ’large’ values of τ whereas
they are frequent under ’low’ values of τ (figure 1 provides an illustration for the last
case). In 3i)–3iii) below, we report in more detail the outcome of the simulation study
for selected values of σ and τ .

i) For signal ϑ = 4 and volatility σ = 2.5, interesting τ -values range between 2.0

and 2.4. Figure 3 shows empirical distribution functions for the random variables
NT1

, ∆DF (T0,K) and ∆LT (T0,K) obtained from the 10 simulation runs. Vertical
dotted lines indicate the critical values in (4.7), (4.8) and (4.9) as specified in
1). The following percentages of runs turned out to be quiet in the sense of
Definition 4.1:

τ = 2.0 τ = 2.1 τ = 2.2 τ = 2.3 τ = 2.4

0% 10% 60% 100% 100%

Among runs which did not fulfill all requirements of Definition 4.1, some failed
with respect to Poisson-goodness of fit (4.8) or (4.9) while satisfying (4.7), and
some runs failed to (4.7) while satisfying (4.8) and (4.9). Figure 3 provides
evidence that for ϑ and σ fixed, laws of NT1

, ∆DF (T0,K) and ∆LT (T0,K) do

depend on τ . Figure 3 suggests in addition that laws under Q(ϑ,τ,σ)
µ of these three

variables should be stochastically ordered in τ , in the sense that larger values
of the back-driving force tend (while reducing among all observed spikes the
proportion of double or triple ones) to reduce the total number of spikes and to
improve the quality of Poisson approximation. As an example, the 10 simulation
runs (over total time T1 = 25000) produced in average 37.4 spikes under τ = 2.0,
in contrast to 5.6 in average under τ = 2.4.

ii) For signal ϑ = 4 and volatility σ = 1.5, results of similar structure as described in
3i) were observed, but now the interesting range of τ -values is between 1.0 and
1.4. In the 10 simulation runs, the following percentage turned out to be quiet in
the sense of Definition 4.1:

τ = 1.0 τ = 1.1 τ = 1.15 τ = 1.2 τ = 1.3 τ = 1.4

0% 0% 30% 70% 80% 100%

The empirical distribution functions in figure 4 illustrate the dependence of the
laws of all three variables NT1

, ∆DF (T0,K) and ∆LT (T0,K) on the back-driving

force τ , and provide a strong hint that laws under Q(ϑ,τ,σ)
µ of the three variables

should be stochastically ordered in the sense of decreasing values of τ . Most
striking example, the 10 simulation runs (with T1 = 25000) produced an average
of 51.1 spikes under τ = 1.0, in strong contrast to an average of only 2.5 under
τ = 1.4.

iii) For signal ϑ = 4 and volatility σ = 1.0, we observe the same features as in 3i) and
3ii). The interesting range of τ -values is now between 0.5 (frequent spikes) and
0.75 (few spikes), and the following percentages of runs turned out to be quiet in
the sense of Definition 4.1:

τ = 0.5 τ = 0.55 τ = 0.6 τ = 0.65 τ = 0.7 τ = 0.75

0% 20% 50% 90% 100% 100%
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4) We sum up as follows: when the signal is ϑ = 4, the schemes in 3i)–3iii) above prove
the dependence of Q(ϑ,τ,σ)

µ (Q(T0,K)) on the volatility σ > 0 and the back-driving force
τ > 0. Stronger values of τ tend to reduce the total number of spikes and to improve
the quality of Poisson approximation. For actual determination of probabilities of
events Q(T0,K) ∈ GT1

in stationary regime, we would of course need much more than
the 10 simulation runs (up to time T1 = 25000, under every parameter configuration)
which we have done. So the above tables above can give only poor approximations so
far.
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Figure 3: In the stochastic Hodgkin-Huxley model with signal ϑ = 4, volatility σ = 2.5,
and values of the back-driving force τ varying between 2.0 and 2.4, we show empirical
distribution functions for the laws of the random variables NT1

, ∆DF (T0,K), ∆LT (T0,K)

under (ϑ, σ, τ). These are based on the values which have been observed in the 10

simulation runs described in 3i) of example 4.2, on a time interval of length T1 = 25000

divided into K = 100 segments of length T0 = 250. The graphics suggest stochastic
ordering of the laws under Q(ϑ,τ,σ)

µ for all three variables, most clearly visible in case of
the total number NT1

of spikes, in the sense of decreasing values of τ .

5 Regular spiking of stochastic neurons

In deterministic Hodgkin-Huxley neurons, regular spiking –in the sense that trajecto-
ries are attracted towards a stable orbit– depends only on the value of the signal ϑ: with
notations of Section 2, this is the case ϑ > sup(Ibs) where we exclude, as in Section 2,
unrealistically large values of the signal.

For a stochastic Hodgkin-Huxley neuron, given Proposition 3.2 or Theorem 3.5, we
shall define regular spiking as an event where up to some sufficiently large time T1, the
pattern of observed spike times is sufficiently close to a regularly spaced grid whose
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Figure 4: In the stochastic Hodgkin-Huxley model with signal ϑ = 4, volatility σ = 1.5,
and values of the back-driving force τ varying between 1.0 and 1.4, we show empirical
distribution functions for the laws of the random variables NT1

, ∆DF (T0,K), ∆LT (T0,K)

under (ϑ, τ, σ). They are based on the values which have been observed in the 10

simulation runs described in 3ii) of Example 4.2, on a time interval of length T1 = 25000

divided into K = 100 segments of length T0 = 250. The graphics suggest strongly that
laws under Q(ϑ,τ,σ)

µ for all three variables should be stochastically ordered in the sense
of decreasing values of τ .

step size is the median

∆(T1) := median
(
τ2 − τ1, . . . , τNT1 − τNT1−1

)
(5.1)

of the interspike times. Simulations indicate that the probability of such events in GT1
in

stationary regime depends on the triplet of parameters (ϑ, τ, σ): for signal ϑ > sup(Ibs),
we can expect regular spiking in the sense of Definition 5.1 with probability close to 1

whenever back-driving force τ in the Ornstein-Uhlenbeck process (3.1) is –in relation to
the value σ of the volatility– large enough.

Fix T1 <∞ and assume that a sufficiently large number of interspike times

τ2 − τ1, . . . , τNT1 − τNT1−1 (5.2)

has been observed up to time T1. Write ĤT1
for the empirical distribution function of the

data set (5.2). Write

∆(T1) = inf{v > 0 : ĤT1
(v) ≥ 0.5}

for the median and

d(α, T1) := inf{v > 0 : ĤT1
(v) ≥ 1− α} − inf{v > 0 : ĤT1

(v) ≥ α}
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for the distance between upper and lower α-quantiles in the data set (5.2), 0 < α < 1
2 ;

relating quantile distances to the median we shall consider ratios

r(α, T1) :=
d(α, T1)

∆(T1)
. (5.3)

The next Definition builds on weak convergence of empirical distributions for the
interspike times, as time goes to infinity, in application of Proposition 3.2: in the long run
under (ϑ, τ, σ), ’typical’ interspike times are distributed according to H(ϑ,τ,σ). If we have
no grasp on the limiting object itself, presence of noise in the system (3.4) –as illustrated
by figures such as 1, 2 or 6 or by detailed representations of the system evolving on
’orbits’ – strongly suggests that H(ϑ,τ,σ) in Proposition 3.2 b) has to be strictly increasing
and continuous on some interval of support. In fact, flats in the limit distribution function
seem impossible under noise –this would imply existence of pairs 0 < x1 < x2 <∞ with
0 < H(ϑ,τ,σ)(x1) = H(ϑ,τ,σ)(x2) < 1 and thus non-existence of interspike times of length
between x1 and x2 in the long run under (ϑ, τ, σ)– as well as point masses. But then,
arbitrary quantiles of the empirical distribution functions ([24] p. 71, without exceptional
set) should converge to those of the limit distribution function, as a consequence of
Proposition 3.2 b) . See also Proposition 8.3 in the Appendix Section 8.

Definition 5.1. Consider a stochastic Hodgkin-Huxley neuron (3.5) under (ϑ, τ, σ). With
notations (5.1)–(5.3) and for T1 large enough, define R(T1) as the event in GT1

on which∣∣∣∣NT1∆(T1)

T1
− 1

∣∣∣∣ ≤ 0.05 and NT1 > 20 (5.4)

holds together with

r(0.05, T1) ≤ 0.3, r(0.1, T1) ≤ 0.2, r(0.25, T1) ≤ 0.1. (5.5)

On the event R(T1) ∈ GT1
we call the stochastic neuron X regularly spiking.

Condition (5.5) requires that quantiles in the data set (5.2) of interspike times are
close to the median, but does not rule out (as illustrated by Figure 2) that up to time T1,
few long spikeless periods alternate with long groups of regularly spaced spikes. This
is why (5.4) requires regular spacing on at least 95% of the time interval on which the
membrane potential is observed.

Example 5.2. As in classical statistics of i.i.d. observations, we can approximateQ(ϑ,τ,σ)
µ (R(T1))

from independent replications of X(ϑ,σ,τ) in stationary regime over time intervals of
length T1. We consider signal ϑ = 10 (for which the deterministic process would evolve
along a stable orbit, see section 2) together with different values of τ and σ.

We use Euler schemes of step size 0.001. In order to mimick stationary regime, in
every simulation run, we cast away an initial piece of trajectory (of length 100) under
randomly chosen initial conditions (uniformly on (−12, 120)×(0, 1)3 for (V, n,m, h) and
according to the stationary law for X; the output U starts at 0), conserve the final state
of this initial piece of trajectory as starting point for the simulation of interest which
then covers a time interval of length T1 = 500. This second piece of trajectory is used for
inference.

Thus, for ϑ = 10 and T1 = 500, we simulate 20 runs under every parameter configura-
tion. The scheme below gives the proportion of runs where regular spiking in the sense
of Definition 5.1 was observed.

τ = 0.1 τ = 0.5 τ = 1 τ = 2.5 τ = 5

σ = 1 100% 100% 100% ∗100% ∗100%
σ = 1.5 55% 90% 100% 100% ∗100%
σ = 2.5 15% 45% 75% 100% 100%
σ = 5 0% 5% 20% 95% 100%
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We deduce that in stationary regime, the event R(T1) ∈ G(T1) has probability close to 1

for well-chosen pairs (τ, σ): either, depending on σ, the back-driving force τ has to be
strong enough, or, depending on τ , the volatility σ has to be small enough. Asterisk ∗

distinguishes parameter configurations under which observed ratios r(0.05, T1) in (5.5)
turned out –on average over the 20 simulation runs– to be strictly smaller than 0.05,
whereas the median ∆(T1) was located between 14.3 and 14.4. In this sense, an upper
right triangle of parameter values shows up in the scheme where quantiles of the data
set (5.2) concentrate sharply at the median, and empirical distribution functions for the
observed values of

r(0.05, T1) , r(0.1, T1) , r(0.25, T1) (5.6)

in the 20 simulation runs under ϑ = 10 (not shown) look very much as a Dirac mass
at ∆(T1) under ’some small random perturbation’. Figure 5 below shows empirical
distribution functions for observed values of ratios (5.6) in case of rather high volatility
σ = 2.5 for all values τ ∈ {0.1, 0.5, 1.0, 2.5, 5.0} in the scheme under ϑ = 10. The graphics
indicate that in stationary regime, laws of variables (5.6) seem to be stochastically
ordered in the back-driving force τ , in the sense that increasing values of τ tend to push
quantiles q(α, T1) closer to the median ∆(T1).

By (3.15)–(3.16), the output U of a stochastic Hodgkin-Huxley neuron (3.5) fluctuates
between ’typical values’ of Uτ` (local maxima) and U(τ`+1)− = Uτ`e

−c1(τ`+1−τ`) (local
minima) as ` → ∞. In general, typical values refers to the approximations and limit
distributions of Proposition 3.6. If however the neuron is regularly spiking, ’typical
values’ takes a much sharper sense: simulations suggest that on events R(T1) as defined
in 5.1, for T1 large enough, functions of ∆(T1)

∑
j≥0

e−c1∆(T1)j =
1

1− e−c1∆(T1)
,
∑
j≥0

e−c1∆(T1)(j+1) =
e−c1∆(T1)

1− e−c1∆(T1)
(5.7)

provide benchmarks which allow to predict where pairs Uτ` , U(τ`+1)− tend to cluster in
the long run, hence predict an interval on which the output process tends to concentrate
a predominant part of future occupation time. Figure 6 provides an illustration.

We shall discuss in an appendix section 8 in which sense (5.7) is expected to provide
good approximations to future values of the output process, on events R(T1) when T1 is
large.

In numerous simulations with large values of signal ϑ and large observation time
T1, whenever the stochastic neuron turned out to be regularly spiking in the sense of
Definition 5.1, benchmarks (5.7) predicted well the range of oscillations of the output
process once time was large enough.

6 Circuits of stochastic Hodgkin-Huxley neurons

This section describes circuits of interacting stochastic Hodgkin-Huxley neurons
where activity shows up in form of blocks of spiking neurons performing slow and
rhythmic oscillation around the circuit. This self-organized rhythmic behaviour of
activity patterns seems to be persistent in the long run. We are however unable to
prove persistence –however strongly suggested by simulations– and restrict this section
to a detailed description of the construction and to some motivating remarks. Our
construction relies on the notions of ’quiet behaviour’ (Definition 4.1) and of ’regular
spiking’ (Definition 5.1)in order to define the interactions between the neurons in the
circuit.

It seems admitted that in networks of biological neurons [15, 5], information transfer
happens in form of excitation and inhibition at a large number of synapses, a by far
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Figure 5: In the stochastic Hodgkin-Huxley model with signal ϑ = 10, volatility σ = 2.5,
and values of the back-driving force τ varying between 0.1 and 5.0, we show empirical dis-
tribution functions for the laws of the random variables r(0.25, T1), r(0.1, T1), r(0.05, T1)

under (ϑ, σ, τ), in stationary regime and with T1 = 500. The empirical distribution
functions are based on the values which have been observed in the 20 simulation runs
described in Example 5.2. The graphics suggest that laws of all three random variables
under Q(ϑ,τ,σ)

µ should be stochastically ordered in τ , in the sense that increasing values
of τ improve remarkably the concentration of interspike times around their median. The
median ∆(T1) itself (as well as the number of spikes in the observation interval) does
not change much with τ : averaged over the 20 runs we obtained 14.19 for τ = 0.1, and
14.33 for τ = 5.0.

larger part of the synapses in the network being excitatory. In our circuit of interacting
stochastic Hodgkin-Huxley neurons, we impose a block structure of the following type:
information transfer from one neuron to the next along the circuit will be excitatory
as long as we remain inside the same block, and will be inhibitory when we pass from
the last neuron in a block to the first neuron in its successor block. In this block-wise
construction of the circuit, as a consequence of excitation and inhibition, self-organized
patterns of oscillation show up quite rapidly. Spiking activity is propagating from block
to block around the circuit: while some blocks are regularly spiking and in this sense
active, others are quiet at the same time, and at certain times, blocks flip from active
to quiet, and back from quiet to active. In this way, block-wise activity patterns arise
and perform a slow rotation along the circuit. This rotational movement seems to be
persistent. However, nothing being proved so far, we only give the construction.

Modelization Step 6.1 (Selecting suitable parameter values). With reference to the
bistability interval Ibs of the deterministic case in Section 2, we fix parameter values

0 < ϑ1 := binf(Ibs)− 1c, ϑ2 := dsup(Ibs) + 1e, 0 < τ <∞ , 0 < σ <∞ (6.1)
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Figure 6: Simulated trajectory of a stochastic Hodgkin-Huxley neuron X(ϑ,τ,σ). The
signal is ϑ = 10. The parameters for the OU process X are τ = 0.7 and σ = 0.83666. The
decay parameter in the output process U is c1 = 0.02. The simulation was done using
an Euler scheme with equidistant steps 0.001. We start with U0 = 0 and random initial
conditions for (V, n,m, h,X). In this simulation, 27 spikes occur up to time T1 = 400. The
median of the 26 interspike times is ∆(T1) = 14.4, lower resp. upper 25%-quantiles are
at 14.07 resp. 14.69, the minimum is 13.87 and the maximum 15.23. Longer and shorter
interspike times seem to alternate at random. Benchmarks (5.7) take the value 3.99

for local maxima of the output process in the long run, and 2.99 for local minima. The
interval (2.99, 3.99) is in good fit with the range of oscillations of the output process U on
the second half of the time interval of observation.

such that a single stochastic Hodgkin-Huxley neuron (3.5) in stationary regime tends to
be

quiet under (ϑ1, τ, σ) in the sense of Definition 4.1 ,

regularly spiking under (ϑ2, τ, σ) in the sense of Definition 5.1,

where we require that the back-driving force τ and the volatility σ be the same in both
cases.

Our choices in modelization step 6.1 require more explanation. First, in stationary
regime and for T0 and K sufficiently large in the sense of Definition 4.1 and Example 4.2,
we have to identify pairs (τ, σ) such that the probability to find the single stochastic
Hodgkin-Huxley neuron (3.5) under (ϑ1, τ, σ) in the event Q(T0,K) ∈ GT1 is close to 1.
Second, in stationary regime and for T1 as in Definition 5.1 and Example 5.2 (which
represents a different choice of T1), we have to identify pairs (τ, σ) such that the
probability to find a single stochastic Hodgkin-Huxley neuron (3.5) under (ϑ2, τ, σ) in the
event R(T1) ∈ GT1

is close to 1. Third, we have to select one pair (τ, σ) which meets both
requirements. This is possible.
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Example 6.2. As an example, with values

ϑ1 = 4 , ϑ2 = 10 (6.2)

satisfying (6.1) according to the numerical considerations of Section 2, the simulations
in Examples 4.2 and 5.2 indicate that a combination of the volatility and the back-driving
force of the form

σ = 1.0 and τ ≥ 0.7 , σ = 1.5 and τ ≥ 1.4 , σ = 2.5 and τ ≥ 2.5

meet the requirements of modelization step 6.1. See the schemes in step 3) of 4.2, and
the scheme in Example 5.2.

For the stochastic neuron under (ϑ2, τ, σ) –regularly spiking with probability close to
1 up to time T1– we fix a prediction ∆∗ = ∆∗(ϑ2, τ, σ) for the median of interspike times
in stationary regime in the long run: combining modelization step 6.1 and Example 5.2,
with T1, R(T1), ∆(T1) from Example 5.2, we define

∆∗ := ∆(T1) (6.3)

which is the median of the interspike times observed up to time T1. Every choice of
a decay parameter c1 in view of a construction (3.15) of an output process U then
associates to ∆∗ an interval (5.7)

(u∗1, u
∗
2) , u∗2 :=

∞∑
j=0

e−c1j∆
∗

, u∗1 :=

∞∑
j=0

e−c1(j+1)∆∗
(6.4)

on which we expect the output process U to accumulate a large amount of occupation
time in the long run. We wish to scale the shape of output processes for regularly spiking
neurons more or less independently of the parameters (ϑ2, τ, σ) and thus of ∆∗.

Modelization Step 6.3 (Calibration of the decay parameter for output processes). From
∆∗ in (6.3) define

c∗ := − log

(
3

4

)
/∆∗;

then, by an ’adapted’ choice of the decay parameter c1 > 0 in (3.15) , we consider
intervals (6.4) which approximately do not depend on the parameters:

c1 ≈ c∗ , u∗2 = (1− e−c1∆∗
)−1 ≈ (1− e−c

∗∆∗
)−1 = 4 , u∗1 ≈ 3. (6.5)

Modelization Step 6.4 (Choice of transmission functions). Select some smooth and
strictly increasing function Ψ∗ : R→ [0, 1] with the properties

lim
v→−∞

Ψ∗(v) = 0 , Ψ∗(1) < 0.025 , Ψ∗(u∗1) > 0.975 , lim
v→∞

Ψ∗(v) = 1 (6.6)

for c1 and (u∗1, u
∗
2) selected in (6.5). For ϑ1 < ϑ2 determined in modelization step 6.1, use

Ψ∗ to define a pair of transmission functions{
Ψexc(x) := ϑ1 + (ϑ2 − ϑ1)Ψ∗(x)

Ψinh(x) := ϑ2 − (ϑ2 − ϑ1)Ψ∗(x)
, x ∈ R. (6.7)

The first function in (6.7) will be used to model excitation, the second inhibition.
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As an example, using well known properties of the standard normal distribution
function Φ and its quantiles, a choice

Ψ∗(x) := Φ

(
x− 1+u∗

1

2
u∗
1−1
6

)

will satisfy (6.6). The transmission functions in (6.7), excitatory or inhibitory, serve as a
key tool to model information transfer between neurons in the circuit under construction.

Modelization Step 6.5 (Construction of the circuit). Fix an integer M ≥ 3 which is odd,
and some integer L ≥ 4. We shall construct a circuit of N := ML neurons

N (1), . . . ,N (N) (6.8)

where we count neurons around the circuit modulo N : in particular, N (0) and N (N)

are different names for the same neuron in the circuit, N (N+1) is N (1), and so on. We
arrange neurons along the circuit (6.8) in M blocks

{1, . . . , L}, {L+1, . . . , 2L}, . . . , {(M − 1)L+ 1, . . . , N} (6.9)

each of which contains L neurons. Subsets of indices

Iinh := {1, L+1, . . . , (M − 1)L+ 1} , Iexc := {1, . . . , N} \ Iinh (6.10)

will be used to distinguish neurons i ∈ Iinh which occupy the first position in their block
(i.e.: i equals 1 modulo L) from neurons i ∈ Iexc which have their predecessor in the
same block. We emphasize that the number M of blocks in (6.9) has to be odd.

In the circuit (6.8) with its block structure (6.9)–(6.10) –where the successor of
neuron N (N) is N (1) and the predecessor of neuron N (1) is N (N) , in the sense of the
circuit– neurons N (i), i ∈ Iexc, will be excited by their predecessor, and neurons N (i),
i ∈ Iinh, will be inhibited by their predecessor. So transfer inside blocks will always be
excitatory; from the last neuron in a block to the first neuron in the following block,
transfer will be inhibitory.

a) For the pair (τ, σ) which has been selected in modelization step 6.1, prepare N = ML

independent Ornstein-Uhlenbeck processes X(i), strong solutions to equations

dX
(i)
t = −τX(i)

t dt+ σdW
(i)
t , 1 ≤ i ≤ N

driven by independent Brownian motions W (i). We stress that by choice in modeliza-
tion step 6.1, the back-driving force and the volatility are the same for all processes
X(i), 1 ≤ i ≤ N .

b) With stochastic processes A(i) = (A
(i)
t )t≥0 designed to model interaction and to be

explained in d) below, we define the i-th neuron N (i) in the circuit, 1 ≤ i ≤ N , as a
stochastic process

N (i) :=
(
V (i), n(i),m(i), h(i), X(i)

)
governed by a stochastic Hodgkin-Huxley equation of form

dV
(i)
t = A

(i)
t dt+ dX

(i)
t − F (V

(i)
t , n

(i)
t ,m

(i)
t , h

(i)
t )dt

dn
(i)
t = [αn(V

(i)
t )(1− n(i)

t )− βn(V
(i)
t )n

(i)
t ]dt

dm
(i)
t = [αm(V

(i)
t )(1−m(i)

t )− βm(V
(i)
t )m

(i)
t ]dt

dh
(i)
t = [αh(V

(i)
t )(1− h(i)

t )− βh(V
(i)
t )h

(i)
t ]dt.

(6.11)
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c) Write (τ
(j)
n )n∈N for the sequence of spike times of neuron N (j), and associate a

counting process N (j) = (N
(j)
t )t≥0 to (τ

(j)
n )n. From N (j) we define an output process

U (j) for neuron N (j)

dU
(j)
t = −c1U (j)

t− dt+ dN
(j)
t , t ≥ 0 (6.12)

and stress that we use for all 1 ≤ j ≤ N the same decay parameter c1 ≈ c∗ selected as
in modelization step 6.3. This implies that for all neurons N (j), the same benchmarks
(6.5) define an interval (u∗1, u

∗
2) over which values of U (j) are expected to fluctuate in

case of regular spiking once time is large enough.

d) At this stage, the structure of the processes A(i) in (6.11) can be specified as follows:

A
(i)
t := Φexc

(
U

(i−1)
t−

)
, i ∈ Iexc,

A
(i)
t := Φinh

(
U

(i−1)
t−

)
, i ∈ Iinh.

Here we use (6.12), (6.6)–(6.7), (6.10), and count modulo N around the circuit (6.8).
In particular, at time t, neuron N (1) depends via

A
(1)
t = Φinh

(
U

(N)
t−

)
on the output of neuron N (N) immediately before time t.

e) To initialize the circuit (6.8), we sample starting values

i) X(i)
0 –for the Ornstein-Uhlenbeck processes in a)– from the invariant law N (0, σ

2

2τ ),
independently for all neurons;

ii) (V
(i)
0 , n

(i)
0 ,m

(i)
0 , h

(i)
0 ) –for the biological variables in b)– from the uniform law on

(−12, 120)×(0, 1), independently for all neurons;

iii) U (i)
0 –for the output processes in c)– either: as random variables

U
(j)
0 independent, 1 ≤ j ≤ N , and distributed uniformly on (1, u∗1) , (6.13)

or: deterministically

U
(j)
0 := 0 for all j = 1, . . . , N. (6.14)

iv) In a last step, given the values selected in iii) and defining by convention
U

(i−1)
0− := U

(i−1)
0 , we determine starting values A(i)

0 for the input processes in

(6.11), depending on the output U (i−1)
0− of the predecessor of neuron N (i) and on

its position in the circuit, according to d) above.

This finishes the initialization of the circuit (6.8).

We now explain why and in which sense circuits constructed as explained in modeliza-
tion steps 6.1, 6.3, 6.4, 6.5 will exhibit auto-generated rhythmic oscillation of spiking
activity around the circuit. There is strong evidence from simulations, see figures 7 and
8 as two examples. We have no rigorous proofs so far.

Remark 6.6. We explain the behaviour of the circuit in the following points i)–v):

i) For a neuron N (i) whose predecessor belongs to the same block, i.e. for N (i) with
index i ∈ Iexc:
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α) Regular spiking of the predecessor N (i−1) over some amount of time drives
values of its output process U (i−1) into neighbourhoods of the interval (u∗1, u

∗
2),

hence values of A(i) = Φexc(U (i−1)) towards ϑ2. Quite rapidly, this will force
N (i) into a regime of regular spiking.

β) Quiet behaviour of the predecessor N (i−1) over some amount of time forces its
output U (i−1) exponentially fast towards 0, hence values of A(i) = Φexc(U (i−1))

towards ϑ1. As a consequence, neuron N (i) will soon be silenced and enter the
quiet regime.

ii) For a neuron N (i) which occupies the first place in its block, i.e. for N (i) with index
i ∈ Iinh:

α) Regular spiking of the predecessor over some amount of time drives its output
U (i−1) into neighbourhoods of the interval (u∗1, u

∗
2), hence values of A(i) =

Φinh(U (i−1)) down to ϑ1. As a consequence, neuron N (i) will be silenced and
enter the quiet regime.

β) Quiet behaviour of the predecessor over some amount of time forces its out-
put U (i−1) towards 0, hence values of A(i) = Φinh(U (i−1)) towards ϑ2. As a
consequence, neuron N (i) will be forced into a regime of regular spiking.

iii) When the blocks have suitable length L, the following happens inside every block:

α) excitation of successor neurons as in i α) tends to propagate through the block
as a whole (i.e. with high probability, the neuron in the last position of the block
will get excited before randomness might generate other patterns), and finally
all neurons in this block will be regularly spiking;

β) silencing of successor neurons as in i β) tends to propagate through the block
as a whole (with analogous caveat), and finally all neurons in the block will be
silenced.

Thus a pattern distinguishing active blocks from quiet blocks will appear in the
circuit.

iv) Consider neurons N (i) which occupy the first position i ∈ Iinh in their block. Then
together with N (i), the block as a whole –as described in iii)– will ’flip’ whenever the
following happens :

α) From active to quiet, given that the block so far was regularly spiking: at the
time where activity propagating through the preceding block reaches position
i−1 ∈ Iexc and thus excites neuron N (i−1), input A(i) = Φinh(U (i−1)) will break
down (as a consequence of growing output U (i−1) since i ∈ Iinh), thus neuron
N (i) will be forced into silence.

β) From quiet to active, given that the block so far was quiet: at the time where
silence propagating through the preceding block attains position i−1 and
silences neuron N (i−1), input A(i) = Φinh(U (i−1)) will increase for position i (as
a consequence of decreasing output U (i−1) since i ∈ Iinh), thus neuron N (i) will
be forced into regular spiking regime. In both cases, by iii), silence of N (i) or
activity of N (i) will propagate over the corresponding block.

v) The number M of blocks being odd by assumption in modelization step 6.5, stable
coexistence in equal number of blocks which are permanently quiet alternating
with blocks which are permanently active is impossible; in permanence, blocks will
be obliged to ’flip’ when either some active block is approached from the left by
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propagating activity, or some silent block is approached from the left by silence. By
’flipping’ of suitable blocks at suitable times, the pattern of alternating active and
quiet regions around the circuit performs some kind of counter-clockwise rotation
which looks very much like a periodic phenomenon.

Figures 7 and 8 below illustrate how oscillating activity patterns according to blocks
in circuits described in modelization steps 6.1, 6.3, 6.4, 6.5 appear and stabilize in a
slow rhythmic rotation around the circuit. Both figures use the same delay parameter
c1 chosen according to (6.5), and the same parameter values for τ and σ chosen as in
modelization step 6.1. The choice of starting values for the collection of output processes
is somewhat different: figure 7 has U (j)

0 = 0 for all j as in (6.14), and figure 8 selects for
all j an initial position uniformly on (1, u∗1) as in (6.13). In both cases, after some initial
phase of randomness which prevails in all blocks, spiking activity in one block turns out
to be strong enough to silence its successor block, thus initializing a rotative motion of
silent and active regions along the circuit.

Remark 6.7. With reference to Ditlevsen and Löcherbach [4], we discuss a deterministic
reference model which explains why we expect the self-organized rhythmic behaviour
of the system constructed in modelization step 6.5 –illustrated by figures 7 and 8,
and explained in remark 6.6– to be persistent in the long run, certainly from time to
time perturbed in a random way but always restoring itself rapidly in the sequel. The
reference model is a simplified special case of the deterministic limit model in [4].

Think of a deterministic system of dimension N = ML where real-valued variables
t→ xi(t) represent in some way a spiking activity of neuron i as a function of time, with
neurons arranged as a circuit of M blocks of L neurons, and where counting modulo N
the interaction is of type

dxi
dt

(t) =

{
−cxi(t)− f(xi−1(t)) if i ∈ Iinh

−cxi(t) + f(xi−1(t)) if i ∈ Iexc

with f some smoothed version of the truncated identity x→ (x ∨ −1) ∧ 1, and c ∈ (0, 1)

some constant. As in (6.10), indices Iinh correspond to neurons which occupy the first
position in their block.

Under the condition that i) M is odd and ii) c is small enough, this system evolves on
a finite number of periodic orbits, and at least one periodic orbit is stable. This follows
from Theorem 3 in Section 4 of [4]. Random initial conditions in this deterministic model
((x1(0), . . . , xN (0)) drawn from a uniform law on (−1, 1)N ) produce activity patterns very
similar to what we see in figures 7 and 8.

Remark 6.8. We emphasize that modelization step 6.1 requires regular spiking under
ϑ2 and quiet behaviour under ϑ1, both with probability close to 1, under the same
pair (τ, σ) governing the Ornstein-Uhlenbeck noise in all neurons. Choice of (τ, σ) is of
key importance for the feature of self-organized oscillation in systems constructed in
modelization steps 6.1, 6.3, 6.4, 6.5 of interacting stochastic Hodgkin-Huxley models.
The feature of interest –self-organized slow rhythmic oscillation of activity patterns
around the circuit– will be destroyed when the volatility σ becomes too large or the
back-driving force τ too small: then for all neurons in the circuit, the spiking activity
will be more or less irregular or chaotic. In this sense, Definitions 4.1 and 5.1 are of key
importance for our construction.

7 Appendix : details for some proofs in Section 3

Fix ϑ, τ and σ and suppress corresponding superscripts (Qx = Q
(ϑ,τ,σ)
x , Eµ = E

(ϑ,τ,σ)
µ ,

etc.).
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Figure 7: Simulation of a circuit described in modelization steps 6.1, 6.3, 6.4 and
6.5 up to time 1800, using Euler schemes of step size 0.001, with N = 12 neurons in
M = 3 blocks of L = 4 cells. We show the spike times of all neurons, with neuron N (i)

represented at horizontal level i, and N (12) = N (0) represented twice to visualize the
cyclic structure. We use red dots for positions i ∈ Iinh, green dots for i ∈ Iexc. ’Noise’
has parameter values σ = 1.5 and τ = 1.4, as in Example 6.2. The decay parameter
c1 = 0.02 for output processes satisfies (6.5), we have ∆∗ ≈ 14.3 in (6.3) and u∗1 ≈ 3.01 in

(6.4). Initial conditions for output processes are (6.14): U (j)
0 = 0 for all j. Thus the input

processes A(i) start at ϑ2 = 10 for i ∈ Iinh, and at ϑ1 = 4 for i ∈ Iexc; this gives a slight
’advantage’ to positions i ∈ Iinh which tend to spike earlier, exciting successor neurons
in the same block. In the initial phase of this simulation, the block {9, 10, 11, 12} is the
first which succeeds in silencing its successor block.

Under the lower bound condition given by Theorem 3.1 d), with T , α, ν and C

as there, Nummelin splitting in the grid chain (XkT )k∈N0
works as follows. Prepare

i.i.d. random variables (Vk)k∈N0
, uniformly distributed on (0, 1), and independent of the

process (XkT )k∈N0 . Whenever the grid chain enters the ’small set’ C at a time k in
a state x ∈ C, we split the transition away from x according to the value of Vk: on
{Vk < α}, we select the successor state y for x according to ν(dy); on {Vk ≥ α}, we
select y according to the probability measure PT (x,dy)−αν(dy)

1−α . Apply colors as follows: on
{Vk < α} we color (k, x) ’red’ and (k+1, y) ’green’; on {Vk ≥ α} we color both (k, x) and
(k+1, y) ’blue’. All other transitions remain uncolored. This amounts to an extension of
the underlying probability space such that for the ’colored’ grid chain (XkT )k∈N0 , the set
of ’green’ time points defines a sequence of renewal times where the grid chain starts
afresh from law ν. This is Nummelin [19]. If we define

R0 ≡ 0 , Rn+1 := inf {k > Rn : XkT ∈ C and Vk < α} , n ∈ N0,
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Figure 8: Simulation of a circuit with the same structure and the same parameters as in figure 7,
except that now we use random initial conditions (6.13) for the output processes: for all j, U (j)

0

is distributed uniformly on (1, u∗
1). Quite rapidly, the circuit organizes itself in patterns which

block-wise perform a slow rotation around the circuit.

then (Rn)n is a sequence of stopping times with respect to the discrete filtration

F̌ = (F̌k)k∈N0
, F̌k := σ (XjT , Vj : 0 ≤ j ≤ k) .

Harris recurrence implies Rn ↑ ∞ almost surely as n→∞. In discrete time, successive
path segments from ’green’ to subsequent ’red’ times (i.e. from Rn + 1 to Rn+1, n ∈ N)

decompose the trajectory of (X
(ϑ)
kT )k∈N0

into i.i.d. excursions which we call life cycles,
up to some initial segment. Positive Harris recurrence by Theorem 3.1 grants that the
expected length E•(R2 − R1) of a life cycle is finite (and independent of the starting
point of X).

In continuous time we consider the filtration

F := (Ft)t≥0 , Ft :=
⋂
r>t

F◦r , F◦t := {Xs, s ≤ t, Vj , jT ≤ t} (7.1)

generated by the pair X(ϑ),
∑
j

Vj1JjT,(j+1)T J

 ,

with T as above. Then (RnT )n∈N is a sequence of F-stopping times increasing to∞. If
we think of the continuous-time process in terms of bridges pasted into the grid chain,
Nummelin splitting in the grid chain with coloring as above shows that path segments

X1J(Rn+1)T,Rn+1T K , n ∈ N (7.2)

from ’green’ to subsequent ’red’ times are i.i.d. in the continuous-time setting ([10]);
note that here we do leave out a short piece of trajectory from ’red’ to ’green’, of length

MNA 3 (2023), paper 1.
Page 28/38

https://mna.episciences.org/

https://doi.org/10.46298/mna.9279
https://mna.episciences.org/


Reinhard Höpfner

T , for all n. For all n ∈ N, the F-stopping times (Rn+1)T are renewal times where the
process starts anew from initial law ν; the future following time (Rn+1)T is independent
from the past FRnT up to time RnT .

When we prefer to consider path segments ’from green to green’

X1J(Rj+1)T,(Rj+1+1)T J , j ∈ N, (7.3)

then these also are identical in law, but independence holds only two-by-two (cf. Löcher-
bach and Loukianova [17]): those with j even are i.i.d., and –separately– those with j odd.
The same reasoning shows that for every K ∈ N which we keep fixed, path segments
’from green to green over K − 1 renewal intervals’

X1J(RjK+r+1)T,(R(j+1)K+r−1+1)T J , 0 < r ≤ K, j ∈ N0 (7.4)

are identical in law, but independence holds K-by-K only: fixing r, path segments

X1J(RjK+r+1)T,(R(j+1)K+r−1+1)T J , j ∈ N0 (7.5)

are independent when 0 < r ≤ K is fixed. We shall speak of (7.3) or of (7.4) as life cycles.

Lemma 7.1. Fix a natural number L > 1. For every point v = (v1, v2, . . . , vL) ∈ [0,∞)L,

with notation [0, v] :=
L

X
i=1

[0, vi], and every function h : [0,∞)L → R which is measurable

and bounded, writing 1[0,v]h for the product 1[0,v] · h, we have almost sure convergence
of

Ĝm(v, h) :=
1

m

m∑
n=1

(
1[0,v]h

)
(τn+1 − τn, . . . , τn+L − τn+L−1) (7.6)

to a deterministic limit as m→∞.

Proof. We modify the proof of Theorem 2.9 in [13], section 5.

1) We count spikes in the life cycles (7.3):

Z̃j :=

∞∑
n=1

1{(Rj+1)T≤τn<(Rj+1+1)T} , j ∈ N. (7.7)

Since interspike times are > δ0 by construction, Z̃j is upper bounded by 1
δ0

(Rj+1 −
Rj)T which has finite expectation. Thus the (Z̃j)j , identical in law, belong to L1(Qµ),
and are independent two-by-two using (7.3). As a consequence,

lim
m→∞

1

2m

2m∑
j=1

Z̃j =
1

2
lim

1

m

m∑
j=1

Z̃2j +
1

2
lim

1

m

m−1∑
j=0

Z̃2j+1 = E•

(
Z̃1

)
exists almost surely, and thus also lim 1

m

∑m
j=1 Z̃j . The limit does not depend on the

starting point. Now asymptotically as m→∞

1

m

m∑
j=1

Z̃m =
1

m
· number of spikes in J(R1 + 1)T, (Rm+1 + 1)T J

=
1

m
· number of spikes in K(R1 + 1)T, (Rm+1 + 1)T K + oQx(1)

=
1

m
· number of spikes in K0, (Rm+1 + 1)T K + oQx(1)

=
1

m
N(Rm+1+1)T + oQx(1)
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whence with the help from Proposition 3.4

Eµ

(
Z̃1

)
= lim
m→∞

1

m

m∑
j=1

Z̃j = TEµ(N1)Eµ(R2 −R1). (7.8)

2) Fix v = (v1, v2, . . . , vL) ∈ [0,∞)L and h : [0,∞)L → R measurable and bounded, and
consider

Zj(v, h) :=

∞∑
n=1

1{(Rj+1)T≤τn<(Rj+1+1)T}
(
1[0,v]h

)
(τn+1 − τn, . . . , τn+L − τn+L−1) (7.9)

for j ∈ N. Then the (Zj(v, h)j are identical in law, and belong to L1(Qµ) by comparison
with (7.7). We shall show in two steps –2i) and 2ii) below– that the variables (Zj(v, h)j
in (7.9) are independent K-by-K provided we choose K ∈ N large enough, i.e. for

K ≥ 2 +
1

T

L∑
i=1

vi. (7.10)

i) In (7.9) we have to consider events

B(j, n) := {(Rj + 1)T ≤ τn < (Rj+1 + 1)T}
⋂ L⋂

i=1

{τn+i − τn+i−1 ∈ [0, vi]}

on which

τn+L = τn +

L∑
i=1

(τn+i − τn+i−1) < (Rj+1 + 1)T +

L∑
i=1

vi;

thus with the choice (7.10), the following holds on B(j, n):

τn+L < (Rj+1 + 1)T + (K − 2)T = (Rj+1 +K − 1)T < Rj+KT.

ii) Now
{(Rj + 1)T ≤ τn < (Rj+1 + 1)T} ∈ Fτn

and (τj)j is an increasing sequence of F-stopping times: thus the event B(j, n)

belongs to the σ-field FRj+KT of events up to time Rj+KT . Since the last σ-field
does not depend on n, the definition (7.9) grants that for every j ∈ N,

the variable Zj(v, h) is measurable with respect to FRj+KT (7.11)

whereas the construction of the renewal times (Rj + 1)T for the continuous-time
process X implies

the variable Zj(v, h) is independent of FRjT (7.12)

for all j. As a consequence, the family (Zj(v, h))j is independent K-by-K as
asserted since we have for every 0 < r ≤ K independence in restriction to the
subfamily {Z`K+r(v, h), ` ∈ N0} .

3) The (Zj(v, h))j being identical in law and independent K-by-K, a deterministic limit

lim
m→∞

1

m

m∑
j=1

Zj(v, h) = lim
m→∞

1

mK

mK∑
j=1

Zj(v, h)

=
1

K

K∑
r=1

(
lim
m→∞

1

m

m−1∑
`=0

Z`K+r(v, h)

)
= Eµ(Z1(v, h))

exists almost surely, by the classical strong law of large numbers. This is the essential
step in the proof of the lemma.
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4) Asymptotically as m→∞ we can write

1

m

m∑
j=1

Zj(v, h)

in the following form:

1

m

m∑
j=1

∞∑
n=1

1{(Rj+1)T≤τn<(Rj+1+1)T}
(
1[0,v]h

)
(τn+1 − τn, . . . , τn+L − τn+L−1)

=
1

m

∞∑
n=1

1{(R1+1)T≤τn<(Rm+1+1)T}
(
1[0,v]h

)
(τn+1 − τn, . . . , τn+L − τn+L−1)

=
1

m

N(Rm+1+1)T∑
n=N(R1+1)T+1

(
1[0,v]h

)
(τn+1 − τn, . . . , τn+L − τn+L−1) + oQx(1)

=
1

m

N(Rm+1+1)T∑
n=1

(
1[0,v]h

)
(τn+1 − τn, . . . , τn+L − τn+L−1) + oQx(1)

=
N(Rm+1+1)T

m
ĜN(Rm+1+1)T

(v, h) + oQx(1)

= TEµ (N1)Eµ (R2 −R1) ĜN(Rm+1+1)T
(v, h) + oQx(1)

with the help from Proposition 3.4 and since h : [0,∞)L → R is bounded. From the
last line and step 3) it follows that

lim
m→∞

ĜN(Rm+1+1)T
(v, h) (7.13)

exists almost surely and equals

Eµ (Z1(v, h)) / (TEµ (N1)Eµ (R2 −R1)) = Eµ (Z1(v, h)) /Eµ

(
Z̃1

)
(7.14)

with reference to step 1). Decomposing h into positive and negative part shows that
it is sufficient to consider h ≥ 0: but then, existence of the limit in (7.13) is equivalent
to existence of the limit

lim
m→∞

Ĝm(v, h) (7.15)

almost surely, and the proof of the lemma is finished.

Remark 7.2. The almost sure limit in Lemma 7.1 and in (7.13)–(7.15) of its proof

Eµ (Z1(v, h)) /Eµ

(
Z̃1

)
= lim
m→∞

Ĝm(v, h)

admits an interpretation: it equals the relative number of spikes in the long run for which
subsequent L interspike times realize a particular pattern, expressed by the function
1[0,v]h,

lim
t→∞

1

Nt

Nt∑
n=1

(
1[0,v]h

)
(τn+1 − τn, . . . , τn+L − τn+L−1) (7.16)

(considering h ≥ 0 first, (7.16) is a consequence of (7.15) exactly as (7.15) was a
consequence of (7.13) in step 4) of the proof of Lemma 7.1), and it equals –in terms of
life cycles, cf. (7.9) and (7.3)– the ratio

Eµ
(∑∞

n=1 1{(R1+1)T≤τn<(R2+1)T}
(
1[0,v]h

)
(τn+1 − τn, . . . , τn+L − τn+L−1)

)
Eµ
(∑∞

n=1 1{(R1+1)T≤τn<(R2+1)T}
) (7.17)
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between the expected number of spikes in a life cycle for which subsequent L interspike
times realize this particular pattern, divided by the expected number of spikes in the life
cycle.

Proof for Theorem 3.5. The special case h ≡ 1 in Lemma 7.1 establishes pointwise con-
vergence on [0,∞)L of empirical distribution functions Ĝm(·) := Ĝm(·, h ≡ 1) associated
to the first m observed L-tuples of successive interspike times

(τn+1 − τn, . . . , τn+L − τn+L−1) , n ∈ N

in (3.14) to a limit Gµ(·). The proof of Lemma 7.1, or Remark 7.2, identifies the limit as

Gµ(v) := Eµ (Z1(v, h ≡ 1)) /Eµ

(
Z̃1

)
, v ∈ [0,∞)L

where Z1(v, h ≡ 1) and Z̃1 are given by (7.9) and (7.7). By (7.17), with h ≡ 1 and
v = (v1, . . . , vL),

Gµ(v) =
Eµ
(∑∞

n=1 1{(R1+1)T≤τn<(R2+1)T}1[0,v1](τn+1 − τn) · · ·1[0,vL](τn+L − τn+L−1)
)

Eµ
(∑∞

n=1 1{(R1+1)T≤τn<(R2+1)T}
) .

Interspike times are > δ0 by construction, are finite, and a life cycle contains a finite
number of spikes: so the last representation shows that Gµ(·) is the distribution func-
tion of a probability measure on [0,∞)L, clearly concentrated on (0,∞)L. Pointwise
convergence Ĝm → Gµ on [0,∞)L being established, uniformity on [0,∞)L follows as in
classical proofs of the Glivenko-Cantelli Theorem on RL. Theorem 3.5 is proved.

Remark 7.3. a) The product 1[0,v]h in Lemma 7.1 allows to study the relative frequen-
cies in the long run of particular patterns in groups of L successive interspike times.
As an example, consider points v in [0,∞)L such that v1 = v2 = . . . = vL =: v̄ is
sufficiently large, and let h denote the indicator of events in L-point data sets such
that ’the distance between upper and lower 10% quantiles does not exceed 5% of
the median’. Then Gµ(v, h) gives the proportion of spike times τn in the long run
which are to be followed by interspike times (τn+1 − τn, . . . , τn+L − τn+L−1) with the
following two properties: i) the interspike times do not exceed v̄; ii) the interspike
times cluster in the above sense in small neighbourhoods of their median. Under this
(or similar) definition of h, spikes will look close-to-equally spaced over large periods
of time whenever Gµ(v, h) is close to one. Ĝm(v, h) gives the relative frequency of
the pattern encoded in

(
1[0,v]h

)
in observed spike trains of length m. While we have

probably no chance to calculate Gµ(·, h) in the sense of an explicit and closed-form ex-

pression, we may replace it with Ĝm(·, h) when m is large. Thus Lemma 7.1 provides
us –asymptotically as m→∞– with tools in view of statistical inference.

b) We emphasize that the renewal techniques in the proof of Lemma 7.1 build on
presence of an indicator 1[0,v] in the product 1[0,v]h: this indicator can not be omitted.

Proof for Proposition 3.6: Fix ε > 0. Choose L large enough for
∑
`>L e

−c1δ0` < ε. For
every n ∈ N, the pair

(
Uτn+L

, U(τn+L+1)−
)

to be considered in (3.17)

Uτn+L
=

n+L∑
j=1

e−c1(τn+L−τj) =

L∑
`=1−n

e−c1(τn+L−τn+`)

U(τn+L+1)− = Uτn+L
e−c1(τn+L+1−τn+L) =

L∑
`=1−n

e−c1(τn+L+1−τn+`)
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will be approximated with the help of truncated sums by

Vn :=

n+L∑
j=n

e−c1(τn+L−τj) =

L∑
`=0

e−c1(τn+L−τn+`)

V −n+1 := Vne
−c1(τn+L+1−τn+L) =

L∑
`=0

e−c1(τn+L+1−τn+`).

This pair
(
Vn, V

−
n+1

)
appears as approximation (3.18) in Proposition 3.6.

1) Since interspike times are > δ0 by construction in (3.10), we have geometric bounds

0 < Uτn+L
− Vn <

∑
`>L

e−c1`δ0 < ε , 0 < U(τn+L+1)− − V −n+1 <
∑
`>L

e−c1(`+1)δ0 < ε

uniformly in n. This is the first assertion in Proposition 3.6.

2) Consider points x = (x1, . . . , xL+1) in [δ0,∞)L+1, with δ0 from (3.10). With c1 from
(3.15) or (3.16), we define continuous functions

f1 : x −→ e−c1(xL+...+x1) + e−c1(xL+...+x2) + . . .+ e−c1xL + 1

f2 : x −→ e−c1(xL+1+...+x1) + e−c1(xL+1+...+x2) + . . .+ e−c1(xL+1+xL) + e−c1xL+1

which on [δ0,∞)L+1 are bounded by
∑
`≥0 e

−c1`δ0 (the last bound does not depend on
L). Interspike times being > δ0 by construction, we have

Vn = f1 (τn+1 − τn, . . . , τn+L − τn+L−1, τn+L+1 − τn+L)

V −n+1 = f2 (τn+1 − τn, . . . , τn+L − τn+L−1, τn+L+1 − τn+L) .

We can extend f1, f2 to continuous and bounded functions [0,∞)L+1 → R.

3) On [0,∞)L+1, we write indistinctly Ĝm for the empirical distribution functions in
Theorem 3.5 (with L to be replaced by L + 1) and for the associated empirical
measures

1

m

m∑
n=1

ε(τn+1−τn,...,τn+L−τn+L−1,τn+L+1−τn+L) , m→∞.

By Theorem 3.5, empirical measures Ĝm converge weakly in [0,∞)L+1 to Gµ as
m → ∞ (again we write Gµ both for the limiting probability measure on [0,∞)L+1

and for its distribution function). Introducing the continuous function

F := (f1, f2) : [0,∞)L+1 → [0,∞)2

the continuous mapping theorem shows that the empirical measures

Ĥm =
1

m

m∑
n=1

ε(Vn,V −
n+1)

=
1

m

m∑
n=1

εF (τn+1−τn,...,τn+L−τn+L−1,τn+L+1−τn+L)

on [0,∞)2, images of Ĝm under F , converge weakly in [0,∞)2 to the probability
measure Hµ

Hµ(A) := Gµ
(
F−1(A)

)
, A ∈ B([0,∞)2),

the image of Gµ under F . Weak convergence in [0,∞)2 can be reformulated in terms
of distribution functions as asserted in Proposition 3.6.
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Remark 7.4. It is clear that –introducing some more indices– the last proof can be
extended to deal with J -tuples (3.19)((

Uτn+j+L
, U(τn+j+L+1)−

)
0≤j≤J

)
, n ∈ N

as mentioned at the end of Section 3.3. The problem that we need huge values of L in
order to obtain small values of ε remains the same. The limit law in such an extension of
Proposition 3.6 has the interpretation of governing patterns in the output process which
may be observed in the long run.

8 Appendix: a discussion of the benchmarks (5.7) in Section 5

As a complement to Section 5, we discuss –with notations of Section 5– the role of
benchmarks (5.7) in connection with asymptotic properties of the sequence of events
R(T1) as T1 →∞.

Our discussion is based on two conjectures concerning the limit distribution H(ϑ,τ,σ)

from Proposition 3.2 b) for the empirical distribution functions Ĥn of the first n interspike
times as n→∞.

Conjecture 8.1. For all parameter values (ϑ, τ, σ), H(ϑ,τ,σ) is continuous and strictly
monotone on its interval of support (α(ϑ,τ,σ), β(ϑ,τ,σ)) in (0,∞).

In view of the second conjecture, write q(ϑ,τ,σ)(α) := inf{v > 0 : H(ϑ,τ,σ)(v) ≥ α}
for quantiles of H(ϑ,τ,σ), ∆(ϑ,τ,σ) for the median of H(ϑ,τ,σ), d(ϑ,τ,σ)(α) for the difference
between upper and lower α-quantiles, and

r(ϑ,τ,σ)(α) :=
d(ϑ,τ,σ)(α)

∆(ϑ,τ,σ)

for the ratio ’difference between upper and lower α-quantiles divided by the median’ in
H(ϑ,τ,σ).

Conjecture 8.2. There are parameter triplets (ϑ, τ, σ) such that H(ϑ,τ,σ) satisfies

r(ϑ,τ,σ)(0.05) < 0.3 , r(ϑ,τ,σ)(0.1) < 0.2 , r(ϑ,τ,σ)(0.25) < 0.1

together with ∣∣∣E(ϑ,τ,σ)
µ (N1) ∆(ϑ,τ,σ) − 1

∣∣∣ < 0.05

where we refer to the almost sure limit lim
t→∞

Nt
t under (ϑ, τ, σ) in virtue of Proposition 3.4.

Even if we have no proof so far (the proofs for Proposition 3.2 b) –or for Theorem 3.5
in Section 7– yield existence of almost sure limits, and nothing more) we do not doubt
that Conjecture 8.1 holds true for all parameter triplets (ϑ, τ, σ), and that Conjecture 8.2
holds true whenever the signal ϑ is large and –depending on the value of σ– the back-
driving force τ is large enough or –depending on the value of τ– the volatility σ is small
enough. As an example, both Conjectures 8.1 and 8.2 should hold true for the parameter
triplets marked with an Asterisk ∗ in the scheme of Example 5.2.

Proposition 8.3. For parameter triplets (ϑ, τ, σ) satisfying both Conjectures 8.1 and 8.2,
the event

R(∞) := lim inf
T1∈N,T1→∞

R(T1)

in G∞ = C is of full measure under Q(ϑ,τ,σ)
µ .

Proof. Accept Conjectures 8.1 and 8.2 for parameters (ϑ, τ, σ) under consideration.
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1) Since by Proposition 3.2 b) the empirical distribution functions Ĥn associated to
interspike times

(τ2 − τ1, . . . , τn+1 − τn) , n→∞

converge almost surely under (ϑ, τ, σ), uniformly on [0,∞), to a limit distribution func-
tion H(ϑ,τ,σ), continuity and strict monotonicity of the limit –stated in Conjecture 8.1–
imply almost sure convergence of α-quantiles, 0 < α < 1. The same assertion then
holds for empirical distribution functions associated to interspike times (5.2) observed
up to time T1 (

τ2 − τ1, . . . , τNT1 − τNT1−1

)
, T1 →∞

with the same limit distribution function H(ϑ,τ,σ). As a consequence, we have almost
sure convergence of α-quantiles in data sets (5.2) to those of H(ϑ,τ,σ). In particular,
with notations (5.2)–(5.3),

∆(T1) −→ ∆(ϑ,τ,σ) , r(α, T1) −→ r(ϑ,τ,σ)(α) (8.1)

converge almost surely as T1 →∞; in the limit appear the corresponding quantities
defined from the limit distribution H(ϑ,τ,σ).

2) Accepting Conjecture 8.2, we have

r(ϑ,τ,σ)(0.05) < 0.3 , r(ϑ,τ,σ)(0.1) < 0.2 , r(ϑ,τ,σ)(0.25) < 0.1.

In virtue of (8.1), as T1 ∈ N and T1 →∞, we do have

r(0.05, T1) ≤ 0.3 , r(0.1, T1) ≤ 0.2 , r(0.25, T1) ≤ 0.1 (8.2)

for eventually all T1 ∈ N. Similarly, accepting Conjecture 8.2 we have∣∣∣E(ϑ,τ,σ)
µ (N1) ∆(ϑ,τ,σ) − 1

∣∣∣ < 0.05

for the limit distribution H(ϑ,τ,σ), and thus, combining (8.1) with Proposition 3.4,∣∣∣∣NT1∆(T1)

T1
− 1

∣∣∣∣ ≤ 0.05 (8.3)

for eventually all T1 ∈ N. By definition of the events R(T1) ∈ GT1 in Definition 5.1 and
by Proposition 3.2 a) , the assertion is proved.

Remark 8.4. By (8.1), Conjecture 8.1 implies that for all (ϑ, τ, σ), the random variables
(5.7) ∑

j≥0

e−c1∆(T1)j =
1

1− e−c1∆(T1)
,
∑
j≥0

e−c1∆(T1)(j+1) =
e−c1∆(T1)

1− e−c1∆(T1)

converge almost surely as T1 →∞ to the deterministic limits

∑
j≥0

e−c1∆(ϑ,τ,σ)j =
1

1− e−c1∆(ϑ,τ,σ)
,
∑
j≥0

e−c1∆(ϑ,τ,σ)(j+1) =
e−c1∆(ϑ,τ,σ)

1− e−c1∆(ϑ,τ,σ)
(8.4)

defined in terms of the median of the limit distribution H(ϑ,τ,σ).
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Remark 8.5. Assume that (ϑ, τ, σ) satisfies Conjectures 8.1 and 8.2. Then, for every

L ∈ N fixed, the limit distribution function G(ϑ,τ,σ)
µ on [0,∞)L from Theorem 3.5, almost

sure limit of empirical distribution functions Ĝm associated to the first m L-tuples out of

(τn+1 − τn, . . . , τn+L − τn+L−1) , n ∈ N

as m→∞, is concentrated on neighbourhoods of the point(
∆(ϑ,τ,σ), . . . ,∆(ϑ,τ,σ)

)
∈ [0,∞)L

in the sense that marginals, i.e. image measures under projection on single coordinates
i ∈ {1, . . . , L}, admit ∆(ϑ,τ,σ) as their median and bounds

r(ϑ,τ,σ)(0.05) < 0.3, r(ϑ,τ,σ)(0.1) < 0.2, r(ϑ,τ,σ)(0.25) < 0.1

on ratios of distances between upper and lower quantiles divided by the median. To
see this, it is sufficient to note that necessarily every marginal of the law G

(ϑ,τ,σ)
µ in

Theorem 3.5 coincides with the probability measure H(ϑ,τ,σ) of Proposition 3.2 b) .

Remark 8.6. Grant Conjectures 8.1 and 8.2 for (ϑ, τ, σ). Then

a) expressions (8.4) provide deterministic benchmarks for the location of (Uτ` , Uτ(`+1)−
)

to be observed under (ϑ, τ, σ) in the long run as `→∞,

b) expressions (5.7) provide GT1 -measurable approximations to (8.4), converging to (8.4)
as T1 →∞.

Proof. i) Note first that the sequence of local maxima (Uτ`)` in the output process U is
bounded: interspike times being bounded away from 0 by definition in (3.10), so local

maxima of U –using (3.16)– take values in the compact set K :=
[
1,
∑
j≥0 e

−c1jδ0
]
.

ii) For arbitrary `, n,m ∈ N we have Uτ` =
∑̀
j=1

e−c1(τ`−τj) and thus

Uτn+m
= Uτne

−c1(τn+m−τn) +

m∑
j=1

e−c1(τn+m−τn+j). (8.5)

If for L large enough an L-tuple of interspike times as considered in Remark 8.5

(τn+1 − τn, . . . τn+L − τn+L−1) , n ∈ N

is well concentrated at ∆(ϑ,τ,σ), then values of Uτn+L
will be close to

u(ϑ,τ,σ)
∞ :=

∑
j≥0

e−c1j∆
(ϑ,τ,σ)

=
1

1− e−c1∆(ϑ,τ,σ)

no matter where Uτn was located in K. Hence small neighbourhoods of u(ϑ,τ,σ)
∞ are

attainable for the process (Uτ`)` of local maxima of the output process.

iii) Whenever Uτn in (8.5) is close to u(ϑ,τ,σ)
∞ for some n, an L-tuple of interspike times

well concentrated at ∆(ϑ,τ,σ) as in ii) allows to write in good approximation

Uτn+L
≈ u(ϑ,τ,σ)

∞ e−c1L∆(ϑ,τ,σ)

+

L∑
j=1

e−c1(L−j)∆(ϑ,τ,σ)

= u(ϑ,τ,σ)
∞ .

Hence also Uτn+L
will be close to u(ϑ,τ,σ)

∞ . This shows that small neighbourhoods of

u
(ϑ,τ,σ)
∞ will be attained infinitely often by the process of local maxima in the long

run.
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iv) Thus asymptotically as `→∞, pairs
(
Uτ` , U(τ`+1)−

)
will visit small neighbourhoods

of (
u(ϑ,τ,σ)
∞ , u(ϑ,τ,σ)

∞ e−c1∆(ϑ,τ,σ)
)

=

(
1

1− e−c1∆(ϑ,τ,σ)
,

e−c1∆(ϑ,τ,σ)

1− e−c1∆(ϑ,τ,σ)

)
infinitely often. In this sense, the deterministic expression (8.4) provides a bench-
mark for the location of pairs

(
Uτ` , U(τ`+1)−

)
under (ϑ, τ, σ) in the long run as `→∞,

in virtue of our two conjectures. This is a). By (8.1), ∆(T1) converges to ∆(ϑ,τ,σ)

almost surely as T1 →∞. So if we have observed the stochastic neuron up to time
T1, for T1 large enough, expressions (5.7)(

1

1− e−c1∆(T1)
,

e−c1∆(T1)

1− e−c1∆(T1)

)
are GT1

-measurable approximations to the benchmark in (8.4). This is b).
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