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Abstract

In this article, we are interested in the behavior of a fully connected network of N
neurons, where N tends to infinity. We assume that the neurons follow the stochastic
FitzHugh-Nagumo model, whose specificity is the non-linearity with a cubic term. We
prove a result of uniform in time propagation of chaos of this model in a mean-field
framework. We also exhibit explicit bounds. We use a coupling method initially sug-
gested by Eberle [9], and recently extended in [8], known as the reflection coupling.
We simultaneously construct a solution of the N -particle system and N independent
copies of the non-linear McKean-Vlasov limit in such a way that, considering an ap-
propriate semi-metric that takes into account the various possible behaviors of the
processes, the two solutions tend to get closer together as N increases, uniformly
in time. The reflection coupling allows us to deal with the non-convexity of the un-
derlying potential in the dynamics of the quantities defining our network, and show
independence at the limit for the system in mean field interaction with sufficiently
small Lipschitz continuous interactions.
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1 Introduction

1.1 Understanding the model

Understanding brain activity is both a complex and important challenge in current
research. Of course, interests are plentiful: characterizing brain functions, unveiling
structures and links between them, and understanding some phenomena such as cyclic
heartbeat. A way of modeling this activity is by considering a very large number of
individual neurons with interactions. Since the number of neurons in a human brain
is around 1011, and even “small” parts of the brain are thus constituted of a very large
number of them, such a strategy can be considered coherent.

The main quantity we study is the membrane potential of the nerve cells: it can “eas-
ily” be observed and its modification characterizes a synapse (an interaction between
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neurons). Neurons regulate their electrical potential. In general, without interaction,
the potential evolves with time but has quite small changes. Incoming potentials from
other neurons are usually what make the neuron fire, i.e. send action potentials to
other neurons. We will here focus on a homogeneous network of neurons and consider
mean-field interactions. This way, each neuron will interact with every other one, as
it can be the case in small regions of the brain. The parameters of the model will be
considered the same for each neuron.

A classical model was introduced by Hodgkin and Huxley [11] using experimental
data on the activity of the giant squid axon. It describes the ion exchanges K+, Na+,
and Cl− through the membrane and their effects on the potential. A simplification of
this model is the FitzHugh-Nagumo model, which reduces the dimension: from a four-
dimensional model (for one neuron) with the Hodgkin-Huxley equations, we obtain a
two-dimensional model, thus yielding a compromise between biological accuracy and
mathematical simplicity.

The deterministic FitzHugh-Nagumo model for one neuron (or one particle) is given
by the following equations

{

dXt = (Xt − (Xt)
3 − Ct − α)dt

dCt = (γXt − Ct + β)dt,

where X is the membrane potential and C is a recovery variable, called the adaptation
variable. The parameters γ and β are positive constants that determine the duration
of excitation and the position of the equilibrium point of this system. Finally, α ∈ R is
the magnitude of a stimulus current (an entrance current in the system). Note that the
variable C isn’t a physical quantity, and is used to allow X to mimic the behavior of the
potential. This variable C has linear dynamics and provides slower negative feedback.

This deterministic model has been largely studied. In Chapter 7 of [30], Thieullen
describes the behavior of the solution of one deterministic FitzHugh-Nagumo system.
She also extends the result in the case of a stochastic FitzHugh-Nagumo system: she
considers a noise on the dynamics of X .

In fact, noise can be introduced in both equations to model different types of random-
ness: when the noise is on the first equation (dynamics of X) with a standard deviation
σX > 0, it models a noisy presynaptic current. When it is on the second equation
(dynamics of C) with a standard deviation σC > 0, it describes a noisy conductance
dynamic (a noise in the chemical behavior). In general, noise in this model is additive.
Various mathematical questions can be studied. Some authors choose to focus on the
properties of the natural macroscopic limit of the model as N → ∞ when it is clearly
defined (see system (1.2)) while others work on properties of the particle system for
fixed N . These models can be quite complicated to study mathematically. The main ob-
jectives are to characterize the behavior of these models when the number of neurons
N tends to +∞ in a mean-field limit, and to prove whether or not there exists an equi-
librium, a stationary behavior, when t tends to +∞. The question of the synchronization
of neurons can also be studied, since it is a phenomenon observed in different contexts,
such as the generation of respiratory rhythm or complex neurological functionalities. It
can be characterized as the dissipation of the empirical variance of the system of neu-
rons. We refer the reader to [6] for further discussion on the synchronization in neuron
models, and especially in the Hodgkin-Huxley model.

In [31], the authors work on the determination of firing times. They consider a
stochastic FitzHugh-Nagumo model for one neuron, with Brownian noise on X , obtain
an approximation of firing times, and compare them with numerical simulations.

In [29], Tatchim Bemmo, Siewe Siewe, and Tchawoua focus on a quite different
stochastic model by considering additive noise η on the dynamics of X , and multiplica-
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tive noise ξ on the dynamics of C, both defined as sinusoidal functions of correlated
Brownian motions. They choose to avoid Gaussian noises since they are unbounded.
They also consider a deterministic and periodic entrance signal in the first equation,
and observe abrupt transitions of the membrane potential X when the intensity of the
noise is gradually changed.

In general, a lot of authors focus on noise on only one variable. In [15], León and
Samson consider a FitzHugh-Nagumo model with noise on C but not on X , i.e. σX = 0,
and study the properties of the equations for one neuron. In particular, they focus on
the hypoellipticity of the model, the existence and uniqueness of an invariant probabil-
ity, and a mixing property by establishing a link between the model and the class of
stochastic damping Hamiltonian systems. They also consider neuronal modeling ques-
tions and study the generation of spikes according to the parameters of the model. On
the contrary, the article [32] focuses on the stochastic FitzHugh-Nagumo model with
noise in the dynamics of X , and σC = 0. They study one neuron in a periodically forced
regime. This study relies on the theory of Markovian Random Dynamical Systems. The
model is driven by a cosine signal, and Uda studies the spike rate and compares it with
the probability of a two-point motion of membrane potential.

However, some do study stochastic models with two noises. Berglund and Landon de-
scribe the behavior of the deterministic FitzHugh-Nagumo model for one neuron in [3],
and consider the stochastic model, with noise on both equations, to work on the behav-
ior of the interspike interval and the distribution of oscillations of the solution.

As said above, we consider mean-field interactions. These interactions are described
by two functions KX and KC , applied on the difference between two states ((X i

t , C
i
t)−

(Xj
t , C

j
t )). In particular, this type of interaction models electrical synapses.

In their article [1], Baladron, Fasoli, Faugeras, and Touboul study FitzHugh-Nagumo
and Hodgkin-Huxley models with mean-field interaction, only onX . They consider more
general interactions, not only applied to the difference between two states, modeling
chemical synapses and electrical synapses. For the FitzHugh-Nagumo model, they con-
sider a noise on X and prove propagation of chaos, i.e. the convergence of the law of
k neurons towards the law of k independent solutions of the mean-field equations. This
article is completed and clarified by the work of Bossy, Faugeras, and Talay in [5]. Mis-
chler, Quininao, and Touboul consider a FitzHugh-Nagumo model in [24], with a linear
interaction on X , and a noise only on X , i.e. σC = 0 and KX(z) = λx. The drift on X is
not exactly the same as in the model above but remains similar as it is a cubic function
of X . They work on the properties of a solution of the McKean-Vlasov PDE associated
to this model and obtain the uniqueness of a global weak solution. Furthermore, they
prove that there exists at least one stationary solution, and when the interaction is small,
the stationary solution is unique and exponentially stable. They also exhibit numerical
results with open problems, like attractive periodic solutions in time. In a similar frame-
work, Luçon and Poquet study the macroscopic limit of this mean-field model in [20],
and in particular the periodicity of such a system. They analyze the influence of both
noise and interaction on the emergence of periodic behavior and prove the existence
of a periodic solution, exponentially attractive, when the parameters satisfy some as-
sumptions and the drift is “small” enough with respect to interaction and noise. Their
approach relies on a slow-fast analysis and Floquet theory. Results of non-uniform prop-
agation of chaos has also been obtained in [23] by Mehri et al., for stochastic spatially
structured neuron networks, by applying the Euler approximation to the construction
of a solution.

This model can be complexified, by considering non-mean-field interaction. In partic-
ular, Bayrak, Hövel, and Vuksanović work on a stochastic FitzHugh-Nagumo model with
a network interaction in [2]. Their type of interaction takes into account a connectivity
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coefficient between two neurons and a propagation velocity.
Other authors choose to complexify the model by considering stochastic FitzHugh-

Nagumo with a spatial model. A second spatial derivative of X is added to the dynamics
of X . Various authors study the behavior of such a model and explore the notion of
random attractors [22, 16, 18, 17].

Various authors also study numerical schemes for the interacting particle system
in the stochastic model. In [25], the authors adapt the Euler-Maruyama scheme to
approximate the solution of the particle system.

1.2 Framework and results

Combining noise and interaction, we work specifically on the following equations,
for 1 ≤ i ≤ N , where N is the number of neurons

{

dX i,N
t = (X i,N

t − (X i,N
t )

3 − Ci,N
t − α)dt+ 1

N

∑N
j=1KX(Zi,N

t − Zj,N
t )dt+ σXdB

i,X
t

dCi,N
t = (γX i,N

t − Ci,N
t + β)dt+ 1

N

∑N
j=1KC(Z

i,N
t − Zj,N

t )dt+ σCdB
i,C
t ,

(1.1)
where we denote by Zi,N

t the couple (X i,N
t , Ci,N

t ) to simplify the notation.
We assume (Bi,X

t )i and (Bi,C
t )i to be independent Brownian motions. Here, we con-

sider two Brownian noises BX and BC , one on each equation, and thus assume that
each neuron has its own independent noise and that there is no environmental (or
shared) noise.

We also assumeKX andKC to be Lipschitz continuous and respectively denote their
Lipschitz constants by LX and LC .

The goal of this article is to describe the behavior of this network as the number N
of neurons tends to infinity.

To describe its behavior, we consider the R
2-valued process (Z̄t)t≥0 = (X̄t, C̄t)t≥0

evolving according to the following non-linear stochastic differential equation ofMcKean-
Vlasov type

{

dX̄t = (X̄t − (X̄t)
3 − C̄t − α)dt+KX ∗ µ̄t(Z̄t)dt+ σXdB̄

X
t

dC̄t = (γX̄t − C̄t + β)dt +KC ∗ µ̄t(Z̄t)dt+ σCdB̄
C
t ,

(1.2)

where µ̄t = Law(Z̄t) is the law at time t of the process (X̄t, C̄t), and ∗ denotes the
operation of convolution, i.e.

KX ∗ µ̄t(u) =

∫

KX(u− v)µ̄t(dv).

To some extent, (1.1) can be seen as an approximation of (1.2) in which the operation
of convolution is applied to the empirical measure µt,emp = 1

N

∑N
i=1 δZi,N

t
, and what we

wish to prove is that, indeed, the law µN
t of the network (1.1) converges in some sense to

µ̄⊗N
t (i.e the law of the solution of (1.2) tensorized N times) as N tends to infinity. This

phenomenon has been stated under the name propagation of chaos -an idea motivated
by M. Kac [13]- as it amounts to saying that, as the number of particles increases in
the system, two particles will become “more and more” independent, their joint law
converging towards a tensorized law. The notion of “propagation” refers to the fact
that proving such convergence at time 0 is sufficient to prove it at a later time t.

In order to prove the convergence of µN
t to µ̄⊗N

t , we follow the coupling method
described in recent work by one of the authors in [10], the result of which cannot be
applied directly here. This method has been put forward by Eberle, following earlier
works by Lindvall and Rogers [19]. Before recalling the method, let us also mention the
recent work [27], which uses a coupling approach adapted to a well-chosen distance.
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We consider rit = |X̄ i
t −X i,N

t | + δ|C̄i
t − Ci,N

t | with δ > 0, a constant not yet specified
(to prove the first result Theorem 1.3, we will consider δ = 1, but we will need a more
specific one for Theorem 1.4).

A natural distance between probability measures is the Wasserstein distance, linked
to the theory of optimal transport. For µ and ν two probability measures on R

d, we
denote

Wp(µ, ν) = inf
X∼µ, Y∼ν

E
(

||X − Y ||pp
)1/p

, (1.3)

where || · ||p denotes the usual Lp distance on R
d. It is thus defined as the minimum

over all possible choices of a pair (X,Y ), such that X is distributed according to µ

and Y according to ν, of the expectation of the distance between X and Y . The basic
idea behind a coupling method is then that an upper bound on the Wasserstein distance
between µ and ν is given by the construction of any pair of random variables distributed
according to these probability measures. Thus, instead of considering the minimum
over all possible couplings, we construct simultaneously two solutions of (1.1) and (1.2)
that will tend to get closer together as the number of neurons increases.

Let
(

X̄ i
t , C̄

i
t

)

, for i between 1 and N , be N independent copies of a solution of (1.2)

driven by some independent Brownian motions (B̄i,X
t )t>0 and (B̄i,C

t )t>0. A coupling of
(

X̄ i
t , C̄

i
t

)

and
(

X i,N
t , Ci,N

t

)

then follows from a coupling of the Brownian motions B and

B̄.

The first natural choice, popularized by Sznitman [28], is the synchronous coupling
and consists in choosing B = B̄. By doing so, when considering the time evolution

of Z̄i
t − Zi,N

t =
(

X̄ i
t −X i,N

t , C̄i
t − Ci,N

t

)

, the noise cancels out. The contraction of a dis-

tance between the processes can then only be induced by the deterministic drift, as
in [4], and this usually only holds under rather restrictive conditions (in particular the
drift should be strongly convex). Nevertheless, in our case, the calculation of the evolu-
tion of X̄ i

t −X i,N
t and C̄i

t − Ci,N
t (see later) shows that there is still some deterministic

contraction when X̄ i
t − X i,N

t = 0. We can therefore use a synchronous coupling in the
vicinity of this subspace.

Outside of this subspace, we use the noise to get the processes closer together. In
the direction orthogonal to the contracting space we consider B = −B̄, as this maxi-
mizes the variance of the noise. This yields the reflection coupling. Notice however
at this stage that, because of the symmetry of the noise, there is a priori no reason
why rit should decrease rather than increase. This invites us to consider f(rit), with f a
concave function, so that a random decrease has more effect than a random increase of
the same value. We will define the function f later.

Finally, we construct a Lyapunov function H to take into account the trend of each
process to come back to some compact set of R2. We are then led to the study of a suit-
able distance between the two processes, which will be of the form ρt :=

1
N

∑N
i=1 f(r

i
t)(1+

ǫH(Z̄i
t) + ǫH(Zi,N

t )), where ǫ > 0. This quantity controls the usual L1 and L2 distances
between the two systems and is interesting as, when rit is small, f(rit) tends to decrease
either because of the deterministic drift or the reflection coupling, and when rit is big,
the Lyapunov functions H will tend to decrease. We thus show that Eρt decays expo-
nentially fast. This leads to several constraints on δ, ǫ and on the parameters involved in
the definition of f , and we have to prove that it is possible to meet all these conditions
simultaneously. In reality, the quantity ρt considered will be a slight twist of the one
given above (see (2.25)) so as to take into account the non-linearity of the process.

As explained, this method requires some noise in the direction orthogonal to the
naturally contracting subspace. This means, in the description of the method above,
that one should have σX > 0 (so that we can use a reflection coupling to bring X̄ i

t and

MNA 3 (2023), paper 3.
Page 5/50

https://mna.episciences.org/

https://doi.org/10.46298/mna.9748
https://mna.episciences.org/


Propagation of chaos in mean field networks of FHN neurons

X i,N
t closer together). In the case σX = 0 and σC > 0, a modification of the calculations

is necessary. We describe this case and the resulting modifications in the computations
in Appendix B.

Assumption 1.1. KX and KC are Lipschitz continuous, i.e.

∃LX ≥ 0, ∀z, z′ ∈ R
2 |KX(z)−KX(z′)| ≤ LX(‖z − z′‖1)

∃LC ≥ 0, ∀z, z′ ∈ R
2 |KC(z)−KC(z

′)| ≤ LC(‖z − z′‖1)
KX(0, 0) = 0 and KC(0, 0) = 0.

Before any result on the propagation of chaos, we prove that both systems (1.1)
and (1.2) have well-defined solutions.

Proposition 1.2 (Existence of solutions). Let KX and KC satisfy Assumption 1.1. We

assume the law of
(

(X1,N
0 , C1,N

0 ), . . . , (XN,N
0 , CN,N

0 )
)

and the law of (X̄0, C̄0) have a mo-

ment of order 2. Then, there exists a unique strong solution for system (1.1) and a
unique strong solution for system (1.2).

We denote W1 and W2 the usual L1 and L2 Wasserstein distances defined in (1.3).

Theorem 1.3 (Non uniform in time propagation of chaos). Let KX and KC satisfy As-
sumption 1.1. There exist explicit C1, C2 > 0, such that for all probability measures µ0

on R
2 with finite second moment,

W1

(

µk,N
t , µ̄⊗k

t

)

≤ C1e
C2t

k√
N
,

for all k ∈ N, where µk,N
t is the marginal distribution at time t of the first k neurons

(

(X1,N
t , C1,N

t ), . . . , (Xk,N
t , Ck,N

t )
)

of an N -particle system (1.1) with initial distribution

µ⊗N
0 , while µ̄t is a solution of (1.2) with initial distribution µ0.

This first theorem is in accordance with the theorem from [14] and makes the de-
pendence in t explicit. Since its proof is rather quick and provides a good entry point
into coupling methods, we give it in Subsection 1.4.

Our main result consists in removing the time dependency in the previous upper
bound. This uniform in time propagation of chaos however requires stronger assump-
tions on the interaction kernels.

Theorem 1.4 (Uniform in time propagation of chaos). Let LX,max and LC,max be two
(explicit) universal constants such that LX ≤ LX,max and LC ≤ LC,max. Let Cinit,exp >
0 and ã > 0. There is an explicit cK > 0 such that, for all KX and KC satisfying
Assumptions 1.1 with LX , LC < cK , there exist explicit B1, B2 > 0, such that for all
probability measures µ0 on R

2 satisfying Eµ0

(

eã(|X|+|C|)) ≤ Cinit,exp,

W1

(

µk,N
t , µ̄⊗k

t

)

≤ B1
k√
N
, W2

2

(

µk,N
t , µ̄⊗k

t

)

≤ B2
k√
N
,

for all k ∈ N, where µk,N
t is the marginal distribution at time t of the first k neurons

(

(X1,N
t , C1,N

t ), . . . , (Xk,N
t , Ck,N

t )
)

of an N -particle system (1.1) with initial distribution

µ⊗N
0 , while µ̄t is a solution of (1.2) with initial distribution µ0.

When we prove uniform in time propagation of chaos, LX,max and LC,max are a priori
bounds. Theorem 1.4 above will be true for LX and LC sufficiently small: the condition
LX ≤ LX,max and LC ≤ LC,max are therefore not restrictive conditions and are useful
in proving some parameters are independent of LX and LC . Lemma 2.2 below shows
that one can for instance consider LX,max = 4 and LC,max = 1

5 . Furthermore cK , that
controls both interactions KX and KC , is explained in Subsection 2.4.
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The main interest of obtaining uniform in time estimates is that it allows the study
and comparison of the long-time behavior of the particle system and its nonlinear limit.
As previously mentioned, this work follows the method described in [10]. Beyond the
result of uniform in time propagation of chaos for the FitzHugh-Nagumo model, which
is in itself an interesting result, the present work is also a testimony to the robustness
of the coupling method.

The reader will find an index containing the notation, constants, and parameters
for reference at the end of the document.

1.3 Existence of solutions

First of all, we prove Proposition 1.2, i.e existence of strong solutions of systems (1.1)
and (1.2), under Assumption 1.1. Let’s denote, for κ ∈ R

+,

gκ(x) =







−κ3 if x < −κ
x3 if x ∈ [−κ, κ]
κ3 if x > κ.

gκ is Lipschitz and is bounded.
Thus, it’s well known (see Chapter 4 [12]) that the following system (under Assump-

tion 1.1 and the assumption that the initial condition has a moment of order 2)











dX i,N,κ
t = (X i,N,κ

t − gκ(X
i,N,κ
t )− Ci,N,κ

t − α)dt+ 1
N

∑N
j=1KX(Zi,N,κ

t − Zj,N,κ
t )

+σXdB
i,X
t

dCi,N,κ
t = (γX i,N,κ

t − Ci,N,κ
t + β)dt + 1

N

∑N
j=1KC(Z

i,N,κ
t − Zj,N,κ

t ) + σCdB
i,C
t ,

(1.4)
for 1 ≤ i ≤ N , has a strong and unique solution that we denote (X i,N,κ

t , Ci,N,κ
t )1≤i≤N .

In consequence, for a fixed κ ∈ R
+, there exists a strong solution of system (1.1)

until time
Tκ = sup

{

t, ∀i, ∀s ≤ t,X i,N,κ
s ≤ κ and Ci,N,κ

s ≤ κ
}

,

and the solution coincides with the solution of the system with gκ.
We have the following Lemma

Lemma 1.5. If, for each i ≤ N , E(|X i,N,κ
0 |2) < +∞ and E(|Ci,N,κ

0 |2) < +∞, then for all
t ≥ 0 there exists Ct <∞ such that, for each i ≤ N

E

(

|X i,N,κ
t |2 + |Ci,N,κ

t |2
)

≤ Ct. (1.5)

The proof relies on the Lyapunov function defined in the next Section and is given in
Appendix A.3.

Then, by denoting T∞ the explosion time of a solution of system (1.1)

T∞ = inf
{

t, ∃i, ∀A > 0, X i,N,κ
t > A or Ci,N,κ

t > A
}

we obtain that ∀t ∈ R
+,P(T∞ ≤ t) = 0 and P(T̄∞ ≤ t) = 0. Eventually, there exists a

unique and strong solution of system (1.1).
The existence and uniqueness of a solution of (1.2) is known from the Theorem 3.3

from [7], under the assumption that the law of the initial point (X̄0, C̄0) has a moment
of order 2. We only have to prove that Assumptions 3.2 [7] are satisfied. We define, for
all t ∈ R

+, z = (x, c) ∈ R
2 and for all probability distribution ν with a finite variance

b(t, z, ν) =

(

x− x3 − c− α+KX ∗ ν(z)
γx− c+ β +KC ∗ ν(z)

)

and σ(t, z, ν) =

(

σX
σC

)

.
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σ is a constant function, so it clearly satisfies the various conditions.
For t ∈ R

+, z, z′ in R
2, and ν a probability measure

〈z − z′, b(t, z, ν)− b(t, z′, ν)〉
=(x − x′)

[

(x− x′)− (x3 − x′3)− (c− c′) +KX ∗ ν(z)−KX ∗ ν(z′)
]

+ (c− c′) (γ(x− x′)− (c− c′) +KC ∗ ν(z)−KC ∗ ν(z′))
=(x − x′)

2 − (x− x′)
2
(x2 + xx′ + x′2) + (γ − 1)(c− c′)(x− x′)− (c− c′)

2

+ (x− x′)(KX ∗ ν(z)−KX ∗ ν(z′)) + (c− c′)(KC ∗ ν(z)−KC ∗ ν(z′)).

Since x2 + xx′ + x′2 ≥ 0, the second term is non-positive. KX and KC are Lipschitz
continuous functions, so the last line is clearly bounded by ‖z−z′‖22 up to a multiplicative
constant. Then, there exists a constant L such that

〈z − z′, b(t, z, ν)− b(t, z′, ν)〉 ≤ L‖z − z′‖22.

Since KX and KC are Lipschitz continuous functions, we also have, for all probability
distributions ν and ν′ with a finite variance,

‖b(t, z, ν)− b(t, z, ν′)‖2 ≤ LW2(ν, ν
′).

Eventually, since b is locally Lipschitz continuous with polynomial growth, each Assump-
tion is satisfied and Theorem 3.3 [7] can be applied. Note that we could also apply
Proposition 2.19 from [21]: assumptions are the same, and it gives a result for interac-
tion depending on a spatial position.

To complete the Lemma 1.5, we also give the following

Proposition 1.6. If, for each i ≤ N , E(|X i,N
0 |2) < +∞ and E(|Ci,N

0 |2) < +∞, then for
all t ≥ 0 there exists Ct <∞ such that, for each i ≤ N

E

(

|X i,N
t |2 + |Ci,N

t |2
)

≤ Ct. (1.6)

and

Proposition 1.7. If E(|X̄0|2) < +∞ and E(|C̄0|2) < +∞, then there exist C0,1 and C0,2

such that
E
(

|X̄t|2 + |C̄t|2
)

≤ C0,1e
C0,2t. (1.7)

The proof is very similar to the proof of Lemma 1.5 and can be found in Appendix A.3.

1.4 Quick result: non uniform in time propagation of chaos

We start by proving Theorem 1.3, a non uniform in time propagation of chaos, as
it highlights the basic strategy behind a coupling argument. Some of the following
expressions will be used in the proof of Theorem 1.4, in Section 3.

We consider a synchronous coupling between (Zi,N
t )i and (Z̄i

t)i, i.e. for each 1 ≤ i ≤
N , we choose B̃i,X

t = Bi,X
t and B̃i,C

t = Bi,C
t . We have

{

dX i,N
t = (X i,N

t − (X i,N
t )

3 − Ci,N
t − α)dt+ 1

N

∑N
j=1KX(Zi,N

t − Zj,N
t )dt+ σXdB

i,X
t

dCi,N
t = (γX i,N

t − Ci,N
t + β)dt+ 1

N

∑N
j=1KC(Z

i,N
t − Zj,N

t )dt+ σCdB
i,C
t

and
{

dX̄ i
t = (X̄ i

t − (X̄ i
t)

3 − C̄i
t − α)dt+KX ∗ µ̄t(Z̄

i
t)dt+ σXdB

i,X
t

dC̄i
t = (γX̄ i

t − C̄i
t + β)dt+KC ∗ µ̄t(Z̄

i
t)dt+ σCdB

i,C
t ,

with µ̄t the law of Z̄1
t . The method is the following
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• we compute the time evolution of E

(

|X i,N
t − X̄ i

t |+ |Ci,N
t − C̄i

t |
)

using Ito’s for-

mula,

• we control the difference between the drifts 1
N

∑

j 6=iK(Z̄i
t − Z̄j

t ) and K ∗ µ̄t(Z̄
i
t)

using some form of the law of large numbers. This is where the convergence rate√
N appears,

• and we conclude using Gronwall’s lemma.

Time evolution: We have,

d(X i,N
t − X̄ i

t) =

(

(X i,N
t − X̄ i

t)−
(

(X i,N
t )

3 − (X̄ i
t)

3
)

− (Ci,N
t − C̄i

t)

+
1

N

N
∑

j=1

KX(Zi,N
t − Zj,N

t )−KX ∗ µ̄t(Z̄
i
t)

)

dt.

We denote

sign(x) =







x

|x| if x 6= 0,

0 otherwise,

and obtain, using Ito’s formula for a twice continuously differentiable approxima-
tion of the absolute value and usual convergence lemmas (see Lemma A.1 below),

d|X i,N
t − X̄ i

t |

=
(

sign(X i,N
t − X̄ i

t)(X
i,N
t − X̄ i

t)− sign(X i,N
t − X̄ i

t)
(

(X i,N
t )

3 − (X̄ i
t)

3
)

− sign(X i,N
t − X̄ i

t)(C
i,N
t − C̄i

t)

+ sign(X i,N
t − X̄ i

t)
1

N

N
∑

j=1

KX(Zi,N
t − Zj,N

t )−KX ∗ µ̄t(Z̄
i
t)



 dt

≤
(

|X i,N
t − X̄ i

t | −
∣

∣

∣(X
i,N
t )

3 − (X̄ i
t)

3
∣

∣

∣+
∣

∣

∣C
i,N
t − C̄i

t

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KX(Zi,N
t − Zj,N

t )−KX ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣



 dt. (1.8)

Similarly,

d|Ci,N
t − C̄i

t |

≤



γ
∣

∣

∣X
i,N
t − X̄ i

t

∣

∣

∣ − |Ci,N
t − C̄i

t |+

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KC(Z
i,N
t − Zj,N

t )−KC ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣



 dt.

(1.9)

Thus, denoting rit = |X i,N
t − X̄ i

t |+ |Ci,N
t − C̄i

t | (i.e considering δ = 1) we obtain,

drit ≤
(

(1 + γ)|X i,N
t − X̄ i

t | −
∣

∣

∣(X
i,N
t )

3 − (X̄ i
t)

3
∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KX(Zi,N
t − Zj,N

t )−KX ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KC(Z
i,N
t − Zj,N

t )−KC ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣



 dt.
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Difference of the drifts: Let us now consider these last two terms

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KX(Zi,N
t − Zj,N

t )−KX ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KX(Z̄i
t − Z̄j

t )−KX ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KX(Zi,N
t − Zj,N

t )− 1

N

N
∑

j=1

KX(Z̄i
t − Z̄j

t )

∣

∣

∣

∣

∣

∣

.

The first sum can be decomposed, using Assumption 1.1, into

1

N

∣

∣

∣

∣

∣

∣

N
∑

j=1

KX(Zi,N
t − Zj,N

t )−KX(Z̄i
t − Z̄j

t )

∣

∣

∣

∣

∣

∣

≤LX

N

N
∑

j=1

‖Zi,N
t − Zj,N

t − (Z̄i
t − Z̄j

t )‖1

≤LXr
i
t +

LX

N

N
∑

j=1

rjt .

Similarly, we obtain

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KC(Z
i,N
t − Zj,N

t )−KC ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣

≤LCr
i
t +

LC

N

N
∑

j=1

rjt

+

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KC(Z̄
i
t − Z̄j

t )−KC ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣

.

Hence, we get

drit ≤



(1 + γ)rit + (LX + LC)



rit +
1

N

N
∑

j=1

rjt





+

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KX(Z̄i
t − Z̄j

t )−KX ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KC(Z̄
i
t − Z̄j

t )−KC ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣



 dt.

By considering the expectation, since E(rjt ) = E(rit) for each j, by exchangeability
of the particles, we have

dE(rit) ≤



(1 + γ + 2LX + 2LC)E(r
i
t) + E





∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KX(Z̄i
t − Z̄j

t )−KX ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣





+E





∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KC(Z̄
i
t − Z̄j

t )−KC ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣







 dt.

Now, we bound the interaction part. We begin with KX . By Cauchy-Schwarz
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inequality, we can write

E





∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KX(Z̄i
t − Z̄j

t )−KX ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣





≤ E







∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KX(Z̄i
t − Z̄j

t )−KX ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣

2






1/2

We notice that (Z̄j
t )j are i.i.d with law µ̄t. Let’s denote Z̄t a generic random vari-

able of law µ̄t independent of Z̄i
t . What is more,KX∗µ̄t(Z̄

i
t) =

∫

KX(Z̄i
t−z)µ̄t(dz) =

E[KX(Z̄i
t − Z̄t)|Z̄i

t ]. Hence

E






E







∣

∣

∣

∣

∣

∣

1

N − 1

∑

j 6=i

KX(Z̄i
t − Z̄j

t )−KX ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣

2
∣

∣

∣
Z̄i
t













= E



Var





1

N − 1

∑

j 6=i

KX(Z̄i
t − Z̄j

t )
∣

∣

∣
Z̄i
t









≤ L2
X

N − 1
E

(

Var
(

‖Z̄i
t − Z̄t‖1

∣

∣

∣Z̄i
t

))

.

Since

E

[

Var
(

‖Z̄i
t − Z̄t‖1

∣

∣

∣Z̄i
t

)]

≤E

[

E

(

‖Z̄i
t − Z̄t‖21

∣

∣

∣Z̄i
t

)]

≤E

[

E

(

2‖Z̄i
t‖21 + 2‖Z̄t‖21

∣

∣

∣Z̄i
t

)]

≤ 4E(‖Z̄t‖21),

we obtain

E






E







∣

∣

∣

∣

∣

∣

1

N − 1

∑

j 6=i

KX(Z̄i
t − Z̄j

t )−KX ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣

2
∣

∣

∣Z̄i
t












≤ 4L2

X

N − 1
E(‖Z̄t‖21).

We now want to control E

(

∣

∣

∣

1
N

∑N
j=1KX(Z̄i

t − Z̄j
t )−KX ∗ µ̄t(Z̄

i
t)
∣

∣

∣

2
)

. We decom-

pose it into

E







∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KX(Z̄i
t − Z̄j

t )−KX ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣

2






=E







∣

∣

∣

∣

∣

∣

N − 1

N

1

N − 1

N
∑

j=1

KX(Z̄i
t − Z̄j

t )−
(

N − 1

N
+

1

N

)

KX ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣

2






≤2
(N − 1)2

N2
E







∣

∣

∣

∣

∣

∣

1

N − 1

N
∑

j=1

KX(Z̄i
t − Z̄j

t )−KX ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣

2






+
2

N2
E
(

|KX ∗ µ̄t(Z̄
i
t)|2
)

.
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Since

E
(

|KX ∗ µ̄t(Z̄
i
t)|2
)

=E

(

∣

∣

∣E

(

KX(Z̄i
t − Z̄t)|Z̄i

t

)∣

∣

∣

2
)

≤L2
XE

(

E

(

‖Z̄i
t − Z̄t‖21|Z̄i

t

))

≤ 4L2
XE(‖Z̄t‖21),

we obtain

E







∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KX(Z̄i
t − Z̄j

t )−KX ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣

2






≤
(

N − 1

N

)2
4L2

X

N − 1
E(‖Z̄t‖21) +

4L2
X

N2
E(‖Z̄t‖21) ≤

8L2
X

N
E(‖Z̄t‖21),

(1.10)

and finally

E





∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KX(Z̄i
t − Z̄j

t )−KX ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣



 ≤
(

8L2
X

N
E(‖Z̄t‖21)

)1/2

.

Similarly, we have

E





∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KC(Z̄
i
t − Z̄j

t )−KC ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣



 ≤
(

8L2
C

N
E(‖Z̄t‖21)

)1/2

,

which yields

dE(rit) ≤
(

(1 + γ + 2LX + 2LC)E(r
i
t) +

√

8L2
X + 8L2

C

(

1

N
E(‖Z̄t‖21)

)1/2
)

dt.

Then using Proposition 1.7, we obtain

dE(rit) ≤
(

(1 + γ + 2LX + 2LC)E(r
i
t) +

√

8L2
X + 8L2

C

√

2C0,1√
N

e
1
2C0,2t

)

dt

Conclusion: We have thus obtained

d

(

E(rit) +

√

16(L2
X + L2

C)C0,1

N

1

1 + γ + 2LX + 2LC − C0,2

2

e
1
2C0,2t

)

≤ (1 + γ + 2LX + 2LC)

×
(

E(rit) +

√

16(L2
X + L2

C)C0,1

N

1

1 + γ + 2LX + 2LC − C0,2

2

e
1
2C0,2t

)

dt,

and Gronwall’s lemma yields

E(rit)+

√

16(L2
X + L2

C)C0,1

N

1

1 + γ + 2LX + 2LC − C0,2

2

e
1
2C0,2t

≤e(1+γ+2LX+2LC)t

×
[

E(ri0) +

√

16(L2
X + L2

C)C0,1

N

1

1 + γ + 2LX + 2LC − C0,2

2

]

,
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thus

E(rit) ≤ C1e
C2t

1√
N
.

Let µ0 a measure on R
2, µk,N

t the marginal distribution at time t of the first k

neurons
(

Z1,N
t , . . . , Zk,N

t

)

of an N -particle system (1.1) with initial distribution

µ⊗N
0 , and µ̄t is a solution of (1.2) with initial distribution µ0. We obtain for the L1

Wasserstein distance

W1(µ
k,N
t , µ̄⊗k

t ) = inf
{

E[‖Z(k) − Z̄(k)‖1],PZ(k) = µk,N
t ,PZ̄(k) = µ̄⊗k

t

}

≤ inf

{

E

[

k
∑

i=1

rit

]

,P(Zi,N
t )

i

= µk,N
t ,P(Z̄i

t)i
= µ̄⊗k

t

}

≤kE(r1t )

≤C1e
C2t

k√
N
.

We hence obtain Theorem 1.3.

2 Preliminaries

In this section, before tackling the proof by the coupling method of the uniform in
time propagation of chaos, we gather the various technical lemmas and construct the
necessary objects.

2.1 Notation

To construct the Lyapunov functions (which allow us to bound the moments of the
processes and show that they tend to come back to some compact set), we begin by
introducing the generators of the processes.

For h : R2N → R, for all (zi)1≤i≤N = (xi, ci)1≤i≤N ∈ R
2N , the generator of (1.1) is

LNh(z1, . . . , zN ) =
N
∑

i=1

Li,Nh,

where

Li,Nh(z1, . . . , zN ) =



xi − x3i − ci − α+
1

N

N
∑

j=1

KX(zi − zj)



 ∂xi
h

+



γxi − ci + β +
1

N

N
∑

j=1

KC(zi − zj)



 ∂cih

+
σ2
X

2
∂2xi,xi

h+
σ2
C

2
∂2ci,cih.

For h : R2 → R, for all z = (x, y) ∈ R
2, the generator of (1.2) for a given distribution µ

is

Lµh(x, c) =
(

x− x3 − c− α+KX ∗ µ(z)
)

∂xh+ (γx− c+ β +KC ∗ µ(z))∂ch

+
σ2
X

2
∂2xxh+

σ2
C

2
∂2cch.
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In particular, we notice that for fixed (zi)1≤i≤N ∈ (R2)
N
, if we consider the empirical

measure {µemp =
1
N

∑

j δzj}, we have for all h : R2 → R and z̄ ∈ R
2,

Lµemph(z̄) =
(

x̄− x̄3 − c̄− α+KX ∗ µemp(z̄)
)

∂xh+ (γx̄− c̄+ β +KC ∗ µemp(z̄)) ∂ch

+
σ2
X

2
∂2xxh+

σ2
C

2
∂2cch

=



x̄− x̄3 − c̄− α+
1

N

N
∑

j=1

KX(z̄ − zj)



 ∂xh

+



γx̄− c̄+ β +
1

N

N
∑

j=1

KC(z̄ − zj)



 ∂ch+
σ2
X

2
∂2xxh+

σ2
C

2
∂2cch.

In this case, if we consider z̄ = zi for a specific i and we denote h̄i : (z1, . . . , zN ) → h(zi),
then

Lµemph(zi) =



xi − x3i − ci − α+
1

N

N
∑

j=1

KX(zi − zj)



 ∂xh

+



γxi − ci + β +
1

N

N
∑

j=1

KC(zi − zj)



 ∂ch+
σ2
X

2
∂2xxh+

σ2
C

2
∂2cch

= Li,N h̄i(z1, . . . , zN).

2.2 First Lyapunov function

Let H : R2 → R be defined by

H(z) = H(x, c) =
1

2
γx2 + βx+

1

2
c2 + αc+H0, (2.1)

with

H0 =
β2

γ
+ α2,

where γ, β and α are the parameters of the system (1.1).

Lemma 2.1. (i) For all x, c ∈ R, we have H(x, c) ≥ γ
4x

2 + c2

4 ≥ 0,

(ii) For all x, c ∈ R, we have H(x, c) ≥ 1
2max(γ,1)

(

(γx+ β)
2
+ (c+ α)

2
)

,

(iii) For all δ > 0 there is Cr,H > 0 such that for all x, x′, c, c′ ∈ R, we have

(|x− x′|+ δ|c− c′|)2 ≤ Cr,H(H(x, c) +H(x′, c′)),

(iv) A direct consequence of the previous point is that for all B ∈ R, λ > 0 and δ > 0,
there is R ≥ 0 such that, for x, x′, c, c′ ∈ R satisfying |x−x′|+δ|c−c′| ≥ R, we have

H(x, c) +H(x′, c′) ≥ 80B
λ . An explicit value of R is given by R =

√

1280(1+δ2)B
λmin(γ,1) .

The first two points are consequences of direct calculations. The last two points are
proved in Appendix A.2. The constant Cr,H has been thus named because it ensures the
control of the modified Euclidean distance r, precisely defined in (2.24), by the function
H.
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Lemma 2.2 (Lyapunov’s property of H). Let λ ∈ R such that

LX

8
+ LC

(

2 +
1

8

)

< 1− λ

2
, (2.2)

then, for H defined in (2.1), there exists B > 0 such that for all (x̄, c̄) ∈ R
2, for all

probability distribution µ on R
2,

LµH(z̄) ≤ B + (αXLX + βXLC)
(

Eµ(|X |)2 − x̄2
)

+ (αCLX + βCLC)
(

Eµ(|C|)2 − c̄2
)

− λH(z̄). (2.3)

Moreover, for all (zi)1≤i≤N ∈ R
2N , by denoting H : (z1, . . . , zN ) 7→ H(zi),

Li,NH(z1, . . . , zN) ≤B + (αXLX + βXLC)











1

N

N
∑

j=1

|xj |





2

− x2i







+ (αCLX + βCLC)











1

N

N
∑

j=1

|cj |





2

− c2i






− λH(zi), (2.4)

with

αX =
γ

2
+

1

2
, βX =

17

2
, αC =

1

16
, βC =

1

2
+

1

32
.

We refer to H as a Lyapunov function, as it ensures that the processes tend to come
back to a compact set.

We refer to Appendix A.3 for the proof of this lemma and of the following Proposition.

Proposition 2.3. We have

LN

(

1

N

N
∑

i=1

H
(

Zi,N
t

)

)

≤ B − λ

(

1

N

N
∑

i=1

H
(

Zi,N
t

)

)

, (2.5)

A direct consequence of (2.3) is

EH
(

Z̄i
t

)

≤ EH
(

Z̄i
0

)

+

∫ t

0

(

B − λEH
(

Z̄i
s

))

ds, (2.6)

and a consequence of (2.5) is

(

1

N

N
∑

i=1

EH
(

Zi,N
t

)

)

≤
(

1

N

N
∑

i=1

EH
(

Zi,N
0

)

)

+

∫ t

0

(

B − λ
1

N

N
∑

i=1

EH
(

Zi,N
s

)

)

ds. (2.7)

From (2.7) we obtain bounds on the moments of
∣

∣

∣X
i,N
t

∣

∣

∣

2

and
∣

∣

∣C
i,N
t

∣

∣

∣

2

, and from (2.6)

Proposition 1.7 on the second moments of X̄ i
t and C̄

i
t . The proof is given in Appendix A.3.

It also yields the following result

Lemma 2.4. Provided the interaction kernels satisfy (2.2), and that E(|X̄0|2) < +∞ and
E(|C̄0|2) < +∞, then there exists Cinit,2 such that for all t ≥ 0

E
(

|X̄t|2 + |C̄t|2
)

≤ Cinit,2.

From now on, we consider λ > 0 satisfying (2.2) (and use the a priori bounds LX,max

and LC,max to ensure the existence of such a λ).
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2.3 Modification of the function

Let Cinit,exp > 0, ã > 0 and consider an initial measure µ0 on R
2 which satisfies

Eµ0

(

eã(|X|+|C|)) ≤ Cinit,exp, where (X,C) is distributed according to µ0.
For technical reasons, we need a greater restoring force by the Lyapunov function

than the one given in Lemma 2.2. We thus modify it to obtain estimates such as (2.14)
and (2.18) below.

Let a > 0, such that a ≤ ã/
(

4
√
2max

(√
γ, 1
))

. This choice of a is only necessary for
further Propositions and Lemmas, in Section 3.

Let us consider for all z ∈ R
2,

H̃(z) =

∫ H(z)

0

exp
(

a
√
u
)

du =
2

a2
exp

(

a
√

H(z)
)(

a
√

H(z)− 1
)

+
2

a2
. (2.8)

Direct calculations yield the following technical lemma.

Lemma 2.5. We have, for all z ∈ R
2

H(z) exp
(

a
√

H(z)
)

≥ H̃(z) ≥ exp
(

a
√

H(z)
)

− 2

a2

(

exp

(

a2

2

)

− 1

)

, (2.9)

2

a

√

H(z) exp
(

a
√

H(z)
)

≥ H̃(z) ≥1

a

√

H(z) exp
(

a
√

H(z)
)

− 1

a2
(e− 2) , (2.10)

H̃(z) ≥H(z). (2.11)

We may calculate, using Lemma 2.1 and Equation (2.3)

Lµ

(

H̃
)

=exp
(

a
√
H
)

LµH +
1

2

a

2
√
H

exp
(

a
√
H
)

(

|σX∂XH |2 + |σC∂CH |2
)

≤ exp
(

a
√
H
)(

B + (αXLX + βXLC)Eµ(|X |)2 (2.12)

+(αCLX + βCLC)Eµ(|C|)2 − λH
)

+
1

2
max

(

σ2
X , σ

2
C

)

max (γ, 1)a
√
H exp

(

a
√
H
)

≤ exp
(

a
√
H
)

(

B +

(

1
2 max

(

σ2
X , σ

2
C

)

max (γ, 1)
)2
a2

2λ
+ (αXLX + βXLC)Eµ(|X |)2

+(αCLX + βCLC)Eµ(|C|)2 −
λ

2
H

)

, (2.13)

where for this last inequality we used Young’s inequality

1

2
max

(

σ2
X , σ

2
C

)

max (γ, 1)a
√
H ≤ λ

2
H +

(

1
2 max

(

σ2
X , σ

2
C

)

max (γ, 1)
)2
a2

2λ
.

Notice that (2.13) ensures that this new Lyapunov function also tends to bring back
particles into a compact set, and at an even greater rate. This new rate H exp(

√
H)

however comes at a cost: the initial condition must have a finite exponential moment,
and no longer just have a finite second moment. First, by Lemma 2.4, E(X̄t)

2
+E(C̄t)

2 ≤
Cinit,2. Furthermore, the function h 7→ exp

(

a
√
h
)

(

B − λ
4h
)

is bounded from above for

h ≥ 0. We therefore obtain from (2.13) the existence of B̃ such that

Lµ̄t

(

H̃
(

Z̄i
t

)

)

≤B̃ − λ

4

(

H
(

Z̄i
t

)

exp

(

a
√

H
(

Z̄i
t

)

))

(2.14)

d

dt
EH̃

(

Z̄i
t

)

≤B̃ − λ

4
E

(

H
(

Z̄i
t

)

exp

(

a
√

H
(

Z̄i
t

)

))

(2.15)

and
d

dt
EH̃

(

Z̄i
t

)

≤B̃ − λ

4
EH̃

(

Z̄i
t

)

, (2.16)
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where for this last inequality, we used (2.9). While (2.14) and (2.15) will be useful in
ensuring a sufficient restoring force, Equation (2.16) gives us a uniform in time bound
on EH̃

(

Z̄i
t

)

, provided we have an initial bound. These inequalities are to be understood
in the sense of SDEs, where (2.16) should for instance be rigorously written

EH̃
(

Z̄i
t

)

≤ EH̃
(

Z̄i
0

)

+

∫ t

0

(

B̃ − λ

4
EH̃

(

Z̄i
s

)

)

ds.

Now, for the system of particles, we have, using (2.13), ∀i, ∀xi, vi ∈ R
d,

LN H̃ (zi) ≤ exp
(

a
√

H (zi)
)






B̃ + (αXLX + βXLC)





1

N

N
∑

j=1

|xj |





2

+(αCLX + βCLC)





1

N

N
∑

j=1

|cj |





2

− λ

2
H (zi)






.

Summing over i ∈ {1, . . . , N}, we may calculate

(αXLX + βXLC)

N
∑

j=1

(

∑N
j=1 |xj |
N

)2 N
∑

i=1

exp
(

a
√

H (zi)
)

N
− λ

16

N
∑

i=1

H (zi) exp
(

a
√

H (zi)
)

N

≤ λ

16





N
∑

i,j=1

H (zi)

N

exp
(

a
√

H (zj)
)

N
−

N
∑

i=1

H (zi) exp
(

a
√

H (zi)
)

N





≤0.

Here, we used Lemma 2.1, the fact that ∀x, y ≥ 0, xe
√
y + ye

√
x − xe

√
x − ye

√
y = (e

√
x −

e
√
y)(y − x) ≤ 0 and assumed

(αXLX + βXLC) ≤
γλ

64
.

Likewise,

(αCLX + βCLC)

N
∑

j=1

(

∑N
j=1 |cj |
N

)2 N
∑

i=1

exp
(

a
√

H (zi)
)

N

− λ

16

N
∑

i=1

H (zi) exp
(

a
√

H (zi)
)

N
≤ 0,

provided

(αCLX + βCLC) ≤
λ

64
.

There is therefore a constant, which for the sake of clarity we will also denote B̃ (as we
may take the maximum of the previous constants), such that we get

Li,N H̃(Zi,N
t ) ≤B̃ + (αXLX + βXLC)

(

∑N
j=1 |X

j,N
t |

N

)2

exp

(

a

√

H
(

Zi,N
t

)

)

+ (αCLX + βCLC)

(

∑N
j=1 |C

j,N
t |

N

)2

exp

(

a

√

H
(

Zi,N
t

)

)

− λ

4
H
(

Zi,N
t

)

exp

(

a

√

H
(

Zi,N
t

)

)

, (2.17)

MNA 3 (2023), paper 3.
Page 17/50

https://mna.episciences.org/

https://doi.org/10.46298/mna.9748
https://mna.episciences.org/


Propagation of chaos in mean field networks of FHN neurons

LN

(

1

N

N
∑

i=1

H̃(Zi,N
t )

)

≤B̃ − λ

4

(

1

N

N
∑

i=1

H(Zi,N
t ) exp

(

a

√

H
(

Zi,N
t

)

))

, (2.18)

and

LN

(

1

N

N
∑

i=1

H̃(Zi,N
t )

)

≤ B̃ − λ

4

(

1

N

N
∑

i=1

H̃(Zi,N
t )

)

. (2.19)

Once again, (2.17) and (2.18) will be useful in ensuring a sufficient restoring force,
and (2.19) yields a uniform in time bound on the expectation of H̃(Zi,N

t ), since by ex-

changeability of the particles, E
(

1
N

∑N
j=1 H̃(Zj,N

t )
)

= E

(

H̃(Zi,N
t )

)

.

2.4 Parameters

We start by fixing the values of some parameters. The somewhat intricate expres-
sions in this section are dictated by the computations arising in the proofs later on. They
are somewhat roughly chosen and far from optimal as we only wish to convey the fact
that every constant is explicit. On first reading, the exact choice of parameters can and
should be skipped, as they are only meant to satisfy Lemma 2.6, which is the crucial
Lemma of this subsection.

Recall αX , βX , αC and βC given in Lemma 2.2. a > 0 is fixed from the last Subsection
and the definition of H̃, and λ and B̃ are obtained from the same Subsection.

Given any η > 4 and δ̃ > 0, consider the following set of parameters

δ =(1 + δ̃)
1 + LX,max

1− LC,max
, R0 =

√

1280B̃

λmin(γ, 1)
, R =

√

1 + δ2R0,

Cf,1 =16

(

(

γ + a
(

β +
α

δ

)

√

2max (γ, 1)
) ea

2/2 −1

a2
+
√

2max (γ, 1)

(√
γ +

1

δ

)

(e−2)

)

,

Cf,2 =4

(

γ +

(

a
(

β +
α

δ

)

+ 2a2
(√

γ +
1

δ

))

√

2max (γ, 1)

)

,

c =min

{

2B̃

η
,
λ

160

η − 4

η
,

min
(

σX√
πR
, 1− LC,max − 1+LX,max

δ

)

2(1 + η)

× exp

(

− 1

4σ2
X

(

1 + δγ + LX,max + δLC,max + (Cf,1 + Cf,2)σ2
X

)

R2

)}

,

ǫ =
ηc

2B̃
, φmin = exp

(

− 1

4σ2
X

(1 + δγ + LX,max + δLC,max + (ǫCf,1 + Cf,2)σ2
X)R2

)

,

C1 =
1

min (δ, 1)

2

φmin
max

(

16(1 + δ2)

ǫmin (γ, 1)
, 1

)

, C2 =
1

min (δ2, 1)

2

φmin
max

(

16(1 + δ2)

ǫmin (γ, 1)
, 1

)

,

Cz =
2

φmin
max

(

1,
4

ǫ
max

(
√

1

γ
, 1

))

.

We define f as follows

f(r) =

∫ r∧R

0

φ(s)g(s)ds, (2.20)

φ(r) = exp

(

− 1

4σ2
X

(

1 + δγ + LX + δLC + (ǫCf,1 + Cf,2)σ2
X

)

r2
)

,
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Φ(s) =

∫ s

0

φ(u)du,

g(r) =1− c+ 2ǫB̃

σ2
X

∫ r

0

Φ(s)φ(s)
−1
ds.

Assume furthermore that LX and LC , the Lipschitz constants, satisfy

LX ≤ min

(

λ

128Cz
,

λa

512ǫCz
,
c

2C1

)

and LC ≤ min

(

λ

128δCz
,

λa

512ǫδCz
,

c

2δC1

)

, (2.21)

αXLX + βXLC ≤ γλ

128
and αCLX + βCLC ≤ λ

128
, (2.22)

LX

8
+ LC

(

2 +
1

8

)

< 1− λ

2
. (2.23)

Notice how the bounds on LX and LC depend on c. This is one of the reasons why we
use the a priori bounds LX ∈ [0, LX,max] and LC ∈ [0, LC,max] given in the assumptions
of Theorem 1.4: they allow us to bound c and δ independently of LC and LX . We are
thus able to begin by choosing acceptable values for those parameters, before then
giving upper bounds on LX and LC . The condition of taking LX and LC small enough
(the condition LX < cK and LC < cK for a well chosen cK , given in Theorem 1.4) is
necessary to satisfy the conditions of (2.21), (2.22) and (2.23).

We quickly mention that the constants C1, C2 and Cz above come from Lemma 2.7
later. We gather some properties required in the calculations of the proof of Theo-
rem 1.4 in the following lemma. Again, these properties are the ones motivating the
choice of parameters

Lemma 2.6. The set of parameters given in Subsection 2.4 satisfy

• f is C2 on (0, R) such that f ′
+ (0) = 1 and f ′

− (R) > 0, and constant on [R,∞).
Moreover, f is non-negative, non-decreasing, and concave, and for all s ≥ 0,

min (s,R) f ′
− (R) ≤ f (s) ≤ min (s, f (R)) ≤ min (s,R) .

• For all r ∈ [0, R], φ(r) ≥ φmin and g(r) ≥ 1
2 .

• We have the conditions

2

f

′
(R) ≥ exp

(

− 1

4σ2
X

(

1 + δγ + LX + δLC + (ǫCf,1 + Cf,2)σ2
X

)

R2

)

,

2c+ 4ǫB̃ ≤
(

1− LC − 1 + LX

δ

)

min
r∈(0,R]

f ′(r)r

f(r)
,

c ≤ λ

160

80ǫB̃
λ

1 + 80ǫB̃
λ

,
1 + LX

1− LC
< δ and ǫ ≤ 1.

The proof of this lemma is done in Appendix A.4.

2.5 Control of the usual distances

As explained previously, we consider a modified semi-metric. For z = (x, c) ∈ R
2 and

z′ = (x′, c′) ∈ R
2, define

r(z, z′) = r(x, c, x′, c′) = |x− x′|+ δ|c− c′|, (2.24)

where δ is given in Subsection 2.4, and let ρ((zj , z′j)1≤j≤N
) be defined as follows

ρ
(

(zj , z
′
j)1≤j≤N

)

=
1

N

N
∑

i=1

f (r (zi, z
′
i))G

i
(

(zj , z
′
j)j

)

, (2.25)
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where for each i ∈ {1, . . . , N},

Gi
(

(zj, z
′
j)j

)

= 1 + ǫH̃ (zi) + ǫH̃ (z′i) +
ǫ

N

N
∑

j=1

H̃ (zj) +
ǫ

N

N
∑

j=1

H̃
(

z′j
)

. (2.26)

An immediate corollary of the definition and properties of H is that ρ is a quantity on
R

4N which controls the usual L1 and L2 distances.

Lemma 2.7. The constants C1, C2, Cz > 0, given in Subsection 2.4, are such that for all
z = (x, c) ∈ R

2 and z′ = (x′, c′) ∈ R
2

(i) ‖z − z′‖1 ≤ C1f (r (z, z′))
(

1 + ǫH̃(z) + ǫH̃(z′)
)

,

(ii) ‖z − z′‖22 ≤ C2f (r (z, z′))
(

1 + ǫH̃(z) + ǫH̃(z′)
)

,

(iii) ‖z − z′‖1 ≤ Czf(r(z, z′))
(

1 + ǫ
√

H(z) + ǫ
√

H(z′)
)

.

The proof of this lemma is postponed to Appendix A.5.

3 Proof of Theorem 1.4 in the case σX > 0

Let ξ > 0 be a parameter destined for vanishing, and let ϕsc : R+ 7→ R
+ and ϕrc :

R
+ 7→ R

+ be two Lipschitz continuous functions such that

∀x, ϕ2
sc(x) + ϕ2

rc(x) =1, (3.1)

ϕrc(x) =1 if ξ ≤ x ≤ R,

ϕrc(x) =0 if x ≤ ξ

2
or x ≥ R+ ξ.

Intuitively, ϕrc represents the region of space in which we consider a reflection coupling,
and ϕsc the one in which we consider a synchronous coupling. In reality, we would like
to consider ϕsc and ϕrc indicator functions of the regions of space. However, we need to
consider a Lipschitz approximation of indicator functions to ensure continuity (to apply
Itô’s calculus) and the strong existence and uniqueness of the stochastic processes. We
thus simultaneously construct the following solutions, for 1 ≤ i ≤ N















dX i,N
t = (X i,N

t − (X i,N
t )

3 − Ci,N
t − α)dt + 1

N

∑N
j=1KX(Zi,N

t − Zj,N
t )dt

+σXϕsc

(

|X i,N
t − X̄ i

t |
)

dBi,sc,X
t + σXϕrc

(

|X i,N
t − X̄ i

t |
)

dBi,rc,X
t

dCi,N
t = (γX i,N

t − Ci,N
t + β)dt+ 1

N

∑N
j=1KC(Z

i,N
t − Zj,N

t )dt+ σCdB
i,C
t ,

and











dX̄ i
t = (X̄ i

t − (X̄ i
t)

3 − C̄i
t − α)dt+KX ∗ µ̄t(Z̄

i
t)dt

+σXϕsc

(

|X i,N
t − X̄ i

t |
)

dBi,sc,X
t − σXϕrc

(

|X i,N
t − X̄ i

t |
)

dBi,rc,X
t

dC̄i
t = (γX̄ i

t − C̄i
t + β)dt+KC ∗ µ̄t(Z̄

i
t)dt+ σCdB

i,C
t ,

where (Bi,sc,X)i and (Bi,rc,X)i are independent Brownian motions (also independent of
(Bi,C)i). Notice that we consider a symmetric coupling on the dynamics of C. By Levy’s
characterization of Brownian motion, using (3.1), we thus construct a solution of (1.1)
and N independent copies of a solution of (1.2).
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3.1 Main proof and results

Proposition 3.1. We denote rit = r(Zi,N
t , Z̄i

t) and G
i
t = Gi((Zj,N

t )j , (Z̄
j
t )j). For all c ∈ R,

for each i ∈ {1, . . . , N}, we have

d(ectf(rit)G
i
t) ≤ ectKi

tdt+ dM i
t , (3.2)

whereM i
t is a continuous local martingale and Ki

t can be written as

Ki
t = K̃i

t + I1,it + I2,it + I3,it . (3.3)

We define K̃i
t , I

1,i
t , I2,it and I3,it as follows

K̃i
t =G

i
t

[

2cf(rit) +
1

2
f ′′(rit)

(

2σ2
Xϕrc

(

|X i,N
t − X̄ i

t |
)2
)

+ f ′(rit)
(

(1 + γδ + LX + δLC)|X i,N
t − X̄ i

t | − |(X i,N
t )

3 − (X̄ i
t)

3|

+ (1 + LX + δLC − δ)|Ci,N
t − C̄i

t |+ (ǫCf,1 + Cf,2)σ2
Xϕrc

(

|X i,N
t − X̄ i

t |
)2

rit

)]

+ ǫf(rit)



4B̃ − λ

16
H̃(Z̄i

t)−
λ

16
H̃(Zi,N

t )− λ

16N

N
∑

j=1

H̃(Z̄j
t )−

λ

16N

N
∑

j=1

H̃(Zj,N
t )



 ,

(3.4)

I1,it =Gi
tf

′(rit)





∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KX(Z̄i
t − Z̄j

t )−KX ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣





+ δGi
tf

′(rit)





∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KC(Z̄
i
t − Z̄j

t )−KC ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣



 , (3.5)

I2,it =Gi
tf

′(rit)





LX

N





N
∑

j=1

‖Zj,N
t − Z̄j

t ‖1







+ δGi
tf

′(rit)





LC

N





N
∑

j=1

‖Zj,N
t − Z̄j

t ‖1









− cf(rit)G
i
t − ǫf(rit)

[

λ

16
H(Z̄i

t) exp

(

a
√

H(Z̄i
t)

)

+
λ

16
H(Zi,N

t ) exp

(

a

√

H(Zi,N
t )

)]

− ǫf(rit)





λ

16N

N
∑

j=1

H(Z̄j
t ) exp

(

a

√

H(Z̄j
t )

)

+
λ

16N

N
∑

j=1

H(Zj,N
t ) exp

(

a

√

H(Zj,N
t )

)



 , (3.6)

I3,it =ǫf(rit)



(αXLX + βXLC)

(

∑N
j=1 |X

j,N
t |

N

)2

exp

(

a

√

H(Zi,N
t )

)

+(αCLX + βCLC)

(

∑N
j=1 |C

j,N
t |

N

)2

exp

(

a

√

H(Zi,N
t )

)

− λ

16
H(Zi,N

t ) exp

(

a

√

H(Zi,N
t )

)

− λ

16N

N
∑

j=1

H(Zj,N
t ) exp

(

a

√

H(Zj,N
t )

)



 . (3.7)

We need to control E(Gi
t). This control is a consequence of Lyapunov’s properties

on H̃ and the initial assumption of the Theorem 1.4. A proof is given in Appendix A.6.
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Lemma 3.2. There exist CG,1 and CG,2, such that for each i ≤ N , for all t > 0, we have

E(Gi
t) ≤ CG,1 and E[(Gi

t)
2
] ≤ CG,2.

The decomposition given in the Proposition 3.1 is true for all c ∈ R. To control
exactly the behavior of each term, we will now consider c, defined in Subsection 2.4.

Each term given in Proposition 3.1 will be controlled differently. The following lem-
mas summarize it. The first term, K̃i

t , contains the various behaviors we have previously
identified: we deal with it either through a synchronous coupling (when the determin-
istic drift is contracting) or through a reflection coupling (notice the second derivative
f ′′ which will provide contraction provided f is sufficiently concave). Finally, notice the
effect of the Lyapunov function H̃ which yields a restoring force.

Lemma 3.3. With the parameters and functions given in Subsection 2.4, for each i ≤ N ,
for all t > 0,

EK̃i
t ≤ ξ

(

2 + δγ + LX + δLC − LC − 1 + LX

δ

)

EGi
t. (3.8)

The interaction term 1
N

∑

j KX(Zj,N
t − Zi,N

t ) −KX ∗ µ̄t(Z̄
i
t) can be decomposed into

the following two parts: 1
N

∑

jKX(Z̄j
t − Z̄i

t)−KX ∗ µ̄t(Z̄
i
t) and

1
N

∑

j [KX(Zj,N
t − Zi,N

t )

−KX(Z̄j
t − Z̄i

t)]. The first part, which is in I1,it , is dealt with using some form of the law
of large numbers in a similar way to what has been done in the proof of Theorem 1.3.

Lemma 3.4. With the parameters and functions given in Subsection 2.4, for each i ≤ N ,
for all t > 0,

E(I1,it ) ≤ 4

√

Cinit,2CG,2

N
(LX + LC), (3.9)

where CG,2 is defined in Lemma 3.2 and Cinit,2 is defined in Lemma 2.4.

I2,it contains the leftovers of this decomposition and some of the additional terms of
the Lyapunov function.

Lemma 3.5. With the parameters and functions given in Subsection 2.4, for all t > 0,

1

N

N
∑

i=1

I2,it ≤ 0. (3.10)

Finally, I3,it deals with the non-linearity appearing in the dynamics of the Lyapunov
function, and will be non-positive for values of LX and LC sufficiently small. It is also
here we justify adding the last two terms in (2.26).

Lemma 3.6. With the parameters and functions given in Subsection 2.4, for each i ≤ N ,
for all t > 0,

I3,it ≤ 0. (3.11)

Proof of Theorem 1.4. With these four Lemmas, we can calculate

1

N

N
∑

i=1

EKi
t =

1

N

N
∑

i=1

EK̃i
t +

1

N

N
∑

i=1

EI1,it +
1

N

N
∑

i=1

EI2,it +
1

N

N
∑

i=1

EI3,it

≤ξ
(

2 + δγ + LX + δLC − LC − 1 + LX

δ

)

1

N

N
∑

i=1

EGi
t + 4

√

Cinit,2CG,2

N
(LX + LC)
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Since by Lemma 3.2, we have 1
N

∑N
i=1 EG

i
t ≤ CG,1, we obtain

1

N

N
∑

i=1

EKi
t ≤ξA+ (LX + LC)

B√
N

where A and B are constants.

For all initial couplings such that Eρ
(

(Zj,N
0 , Z̄j

0)1≤j≤N

)

< ∞, by taking the expecta-

tion of (3.2) along a sequence of increasing localizing stopping times, we have thanks
to Fatou’s lemma

ectE
(

ρ
(

(Zj,N
t , Z̄j

t )1≤j≤N

))

≤E

(

ρ
(

(Zj,N
0 , Z̄j

0)1≤j≤N

))

+ ξA

∫ t

0

ecsds

+ (LX + LC)
B√
N

∫ t

0

ecsds.

We obtain

E

(

ρ
(

(Zj,N
t , Z̄j

t )1≤j≤N

))

≤E

(

ρ
(

(Zj,N
0 , Z̄j

0)1≤j≤N

))

e−ct +
ξA

c

(

1− e−ct
)

+
(LX + LC)B

c

1√
N

(

1− e−ct
)

.

By using the exchangeability of the particles, we haveE
(

ρ
(

(Zj,N
t , Z̄j

t )1≤j≤N

))

= E

(

1
N

∑N
i=1 f(r

i
t)G

i
t

)

=

E

(

1
k

∑k
i=1 f(r

i
t)G

i
t

)

for all k ∈ N. Then

E

(

k
∑

i=1

f(rit)G
i
t

)

= kE
(

ρ
(

(Zj,N
t , Z̄j

t )1≤j≤N

))

.

Let µ0 be a measure on R
2, µk,N

t the marginal distribution at time t of the first k neurons
(

(X1,N
t , C1,N

t ), . . . , (Xk,N
t , Ck,N

t )
)

of an N -particle system (1.1) with initial distribution

µ⊗N
0 , and µ̄t a solution of (1.2) with initial distribution µ0. This impliesE

(

ρ
(

(Zj,N
0 , Z̄j

0)1≤j≤N

))

=

0. By Lemma 2.7, we obtain for the L1 Wasserstein distance

W1(µ
k,N
t , µ̄⊗k

t ) = inf
{

E[‖Z(k) − Z̄(k)‖1],PZ(k) = µk,N
t ,PZ̄(k) = µ̄⊗k

t

}

≤ inf

{

C1E
[

k
∑

i=1

f(rit)G
i
t

]

,P(Zi,N
t )

i

= µk,N
t ,P(Z̄i

t)i
= µ̄⊗k

t

}

≤ inf
{

kC1E
(

ρ
(

(Zj,N
t , Z̄j

t )1≤j≤N

))

,P(Zi,N
t )

i

= µk,N
t ,P(Z̄i

t)i
= µ̄⊗k

t

}

≤ξAkC1
c

(

1− e−ct
)

+
(LX + LC)BC1

c

k√
N

(

1− e−ct
)

By taking the limit as ξ → 0 uniformly in time, we obtain the desired result. The same
lemma and the same type of calculations yield the result for the L2 Wasserstein distance

W2(µ
k,N
t , µ̄⊗k

t )
2 ≤ k√

N
C2

(LX + LC)B

c
.
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3.2 Proof of the decomposition

Proof of Proposition 3.1. First, we need to calculate d(ectf(rit)G
i
t), where we recall

rit = |X i,N
t − X̄ i

t |+ δ|Ci,N
t − C̄i

t |

and

Gi
t = 1 + ǫH̃(Z̄i

t) + ǫH̃(Zi,N
t ) +

ǫ

N

N
∑

j=1

H̃(Zj,N
t ) +

ǫ

N

N
∑

j=1

H̃(Z̄j
t ).

We have already calculated d(X i,N
t − X̄ i

t) and d|X i,N
t − X̄ i

t | in the case of symmetric
coupling in Subsection 1.4 in (1.8). Here, we need to use Ito’s formula and usual con-
vergence lemmas, see Lemma A.1 below, to take care of the Brownian term (recall that
the coefficient in front of the Brownian vanishes in the vicinity of the singularity of the
absolute value). We obtain

d|X i,N
t − X̄ i

t | =AX
t dt+ 2sign(X i,N

t − X̄ i
t)σXϕrc

(

|X i,N
t − X̄ i

t |
)

dBi,rc,X
t ,

with

AX
t ≤|X i,N

t − X̄ i
t | −

∣

∣

∣(X
i,N
t )

3 − (X̄ i
t)

3
∣

∣

∣+
∣

∣

∣C
i,N
t − C̄i

t

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KX(Zi,N
t − Zj,N

t )−KX ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣

.

Likewise, as it has already been calculated in (1.9) in Subsection 1.4,

d|Ci,N
t − C̄i

t | = AC
t dt,

with

AC
t ≤ γ

∣

∣

∣X
i,N
t − X̄ i

t

∣

∣

∣− |Ci,N
t − C̄i

t |+

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KC(Z
i,N
t − Zj,N

t )−KC ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣

.

Now we have

drit =
(

AX
t + δAC

t

)

dt+ 2sign(X i,N
t − X̄ i

t)σXϕrc

(

|X i,N
t − X̄ i

t |
)

dBi,rc,X
t

and we deduce with Ito’s formula

df(rit) = f ′(rit)dr
i
t +

1

2
f ′′(rit)

(

2σXϕrc

(

|X i,N
t − X̄ i

t |
))2

dt.

Finally, for c > 0,

d(ectf(rit)) = cectf(rit)dt+ ectdf(rit).
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Then, by Ito’s formula,

1

ǫ
dGi

t =
(

Lµ̄t
H̃(Z̄i

t) + LN H̃(Zi,N
t )

)

dt

+ σXϕrc

(

|X i,N
t − X̄ i

t |
)(

∂XH̃(Zi,N
t )− ∂XH̃(Z̄i

t)
)

dBi,rc,X
t

+ σXϕsc

(

|X i,N
t − X̄ i

t |
)(

∂XH̃(Zi,N
t ) + ∂XH̃(Z̄i

t)
)

dBi,sc,X
t

+ σC

(

∂CH̃(Zi,N
t ) + ∂CH̃(Z̄i

t)
)

dBi,C
t

+
1

N

N
∑

j=1

(

Lµ̄t
H̃(Z̄j

t ) + LN H̃(Zj,N
t )

)

dt

+
σX
N

N
∑

j=1

ϕrc

(

|Xj,N
t − X̄j

t |
)(

∂XH̃(Zj,N
t )− ∂XH̃(Z̄j

t )
)

dBj,rc,X
t

+
σX
N

N
∑

j=1

ϕsc

(

|Xj,N
t − X̄j

t |
)(

∂XH̃(Zj,N
t ) + ∂XH̃(Z̄j

t )
)

dBj,sc,X
t

+
σC
N

N
∑

j=1

(

∂CH̃(Zj,N
t ) + ∂CH̃(Z̄j

t )
)

dBj,C
t .

We finally get

d(ectf(rit)G
i
t) = Gi

td(e
ctf(rit)) + ectf(rit)dG

i
t

+ 2ǫ

(

1 +
1

N

)

σ2
Xϕrc

(

|X i,N
t − X̄ i

t |
)2

sign(X i,N
t − X̄ i

t)

×
(

∂XH̃(Zi,N
t )− ∂XH̃(Z̄i

t)
)

ectf ′(rit)dt.

Now, we need to use the following Lemma, proven in Appendix A.6, to have a more
tractable expression

Lemma 3.7. We have the upper bound

2ǫ

(

1 +
1

N

)

σ2
Xϕrc

(

|X i,N
t − X̄ i

t |
)2

sign(X i,N
t − X̄ i

t)
(

∂XH̃(Zi,N
t )− ∂XH̃(Z̄i

t)
)

≤ (ǫCf,1 + Cf,2)σ2
Xϕrc

(

|X i,N
t − X̄ i

t |
)2

ritG
i
t.

Eventually, by denoting the terms in dBi,rc,X
t , dBi,sc,X

t , dBi,C
t , . . . as the local martin-

gale dM i
t , we obtain

d(ectf(rit)G
i
t) ≤ Gi

tce
ctf(rit)dt+ ectGi

tf
′(rit)

(

AX
t + δAC

t

)

dt

+ ectGi
t

1

2
f ′′(rit)

(

2σXϕrc

(

|X i,N
t − X̄ i

t |
))2

dt

+ ectf(rit)





(

Lµ̄t
H̃(Z̄i

t) + LN H̃(Zi,N
t )

)

dt+
1

N

N
∑

j=1

(

Lµ̄t
H̃(Z̄j

t ) + LN H̃(Zj,N
t )

)

dt





+ (ǫCf,1 + Cf,2)σ2
Xϕrc

(

|X i,N
t − X̄ i

t |
)2

ritG
i
te

ctf ′(rit)dt+ dM i
t .

We use (2.14) to bound Lµ̄t
H̃(Z̄i

t) and (2.17) to bound LN H̃(Zi,N
t ). The interaction terms
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in AX
t and AC

t are decomposed and we define I1,it as follows

I1,it =Gi
tf

′(rit)





∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KX(Z̄i
t − Z̄j

t )−KX ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣





+ δGi
tf

′(rit)





∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KC(Z̄
i
t − Z̄j

t )−KC ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣



 .

The second part of the decomposition is grouped in I2,it , with compensating terms that
appear with the use of (2.14) and (2.17), to control the sum

I2,it =Gi
tf

′(rit)





LX

N





N
∑

j=1

|Xj,N
t − X̄j

t |+ |Cj,N
t − C̄j

t |









+ δGi
tf

′(rit)





LC

N





N
∑

j=1

|Xj,N
t − X̄j

t |+ |Cj,N
t − C̄j

t |









− cf(rit)G
i
t − ǫf(rit)

[

λ

16
H(Z̄i

t) exp

(

a
√

H(Z̄i
t)

)

+
λ

16
H(Zi,N

t ) exp

(

a

√

H(Zi,N
t )

)]

− ǫf(rit)
λ

16N





N
∑

j=1

H(Z̄j
t ) exp

(

a

√

H(Z̄j
t )

)

+

N
∑

j=1

H(Zj,N
t ) exp

(

a

√

H(Zj,N
t )

)



 .

We gather the expectations terms, obtained with (2.17), in I3,it , and we keep a fraction
of the Lyapunov function to control it

I3,it = ǫf(rit)



(αXLX + βXLC)

(

∑N
j=1 |X

j,N
t |

N

)2

exp

(

a

√

H(Zi,N
t )

)

+(αCLX + βCLC)

(

∑N
j=1 |C

j,N
t |

N

)2

exp

(

a

√

H(Zi,N
t )

)

− λ

16
H(Zi,N

t ) exp

(

a

√

H(Zi,N
t )

)

− λ

16N

N
∑

j=1

H(Zj,N
t ) exp

(

a

√

H(Zj,N
t )

)



 .

Finally, we define K̃i
t with the leftovers. It will, in particular, give the constraints on f

which explain its choice.

K̃i
t =G

i
t

[

2cf(rit) +
1

2
f ′′(rit)

(

2σ2
Xϕrc

(

|X i,N
t − X̄ i

t |
)2
)

+ f ′(rit)
(

(1 + γδ + LX + δLC)|X i,N
t − X̄ i

t | − |(X i,N
t )

3 − (X̄ i
t )

3|

+ (1 + LX + δLC − δ)|Ci,N
t − C̄i

t |+ (ǫCf,1 + Cf,2)σ2
Xϕrc

(

|X i,N
t − X̄ i

t |
)2

rit

)]

+ ǫf(rit)



4B̃ − λ

16
H̃(Z̄i

t)−
λ

16
H̃(Zi,N

t )− λ

16N

N
∑

j=1

H̃(Z̄j
t )−

λ

16N

N
∑

j=1

H̃(Zj,N
t )



 .
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3.3 Controls of I1,it , I2,it and I3,it

Proof of Lemma 3.6. Since we assume

4

γ
(αXLX + βXLC) ≤

λ

32
and 4 (αCLX + βCLC) ≤

λ

32
,

and since

H(Zj,N
t ) exp

(

a

√

H(Zi,N
t )

)

≤ H(Zi,N
t ) exp

(

a

√

H(Zi,N
t )

)

+H(Zj,N
t ) exp

(

a

√

H(Zj,N
t )

)

we obtain

(αXLX + βXLC)

(

∑N
j=1 |X

j,N
t |

N

)2

exp

(

a

√

H(Zi,N
t )

)

+ (αCLX + βCLC)

(

∑N
j=1 |C

j,N
t |

N

)2

exp

(

a

√

H(Zi,N
t )

)

− λ

16N



NH(Zi,N
t ) exp

(

a

√

H(Zi,N
t )

)

+

N
∑

j=1

H(Zj,N
t ) exp

(

a

√

H(Zj,N
t )

)



 ≤ 0.

Then, for each i ≤ N , and for all t > 0, I3,it ≤ 0.

Proof of Lemma 3.5. We prove the non-positivity of 1
N

∑N
i=1 I

2,i
t . First, since f ′ (rit

)

≤ 1,
we have

1

N

N
∑

i=1





1

N
f ′ (rit

)

Gi
t

N
∑

j=1

‖Zj,N
t − Z̄j

t ‖1





≤ 1

N

N
∑

i=1

‖Zi,N
t − Z̄i

t‖1 +
2ǫ

N2

N
∑

i,j=1

‖Zi,N
t − Z̄i

t‖1
(

H̃
(

Z̄j
t

)

+ H̃(Zj,N
t )

)

,

and, using Lemma 2.7 (i)

1

N

N
∑

i=1

‖Zi,N
t − Z̄i

t‖1 ≤ C1
N

N
∑

i=1

f(rit)G
i
t,

and with Lemma 2.7 (iii)

N
∑

i,j=1

‖Zi,N
t − Z̄i

t‖1
(

H̃
(

Z̄j
t

)

+ H̃(Zj,N
t )

)

≤ Cz
N
∑

i,j=1

f(rit)
(

H̃
(

Z̄j
t

)

+ H̃(Zj,N
t )

)

+ ǫCz
N
∑

i,j=1

f(rit)

(
√

H(Zi,N
t ) +

√

H(Z̄i
t)

)

(

H̃
(

Z̄j
t

)

+ H̃(Zj,N
t )

)

.

Using (2.9) from Lemma 2.5, we obtain for the first sum

Cz
N
∑

i,j=1

f(rit)
(

H̃
(

Z̄j
t

)

+ H̃(Zj,N
t )

)

≤ Cz
N
∑

i,j=1

f(rit)

(

H(Z̄j
t ) exp

(

a

√

H(Z̄j
t )

)

+H(Zj,N
t ) exp

(

a

√

H(Zj,N
t )

))

.
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With (2.10) from the same Lemma, we obtain for the second sum

ǫCz
N
∑

i,j=1

f(rit)

(
√

H(Zi,N
t ) +

√

H(Z̄i
t)

)

(

H̃
(

Z̄j
t

)

+ H̃(Zj,N
t )

)

≤ǫCz
2

a

N
∑

i,j=1

f(rit)

(
√

H(Zi,N
t ) +

√

H(Z̄i
t)

)

×
(

√

H
(

Z̄j
t

)

exp

(

a

√

H
(

Z̄j
t

)

)

+

√

H
(

Zj,N
t

)

exp

(

a

√

H
(

Zj,N
t

)

))

.

Since for all (y1, y2, y3, y4) ∈ (R+)
4
, we have

(y1 + y2) (y3e
ay3 + y4e

ay4) ≤ 2
(

y21e
ay1 + y22e

ay2 + y23e
ay3 + y24e

ay4
)

,

we obtain for this last sum

2ǫCz
a

N
∑

i,j=1

f(rit)

(
√

H(Zi,N
t ) +

√

H(Z̄i
t)

)

×
(

√

H
(

Z̄j
t

)

exp

(

a

√

H
(

Z̄j
t

)

)

+

√

H
(

Zj,N
t

)

exp

(

a

√

H
(

Zj,N
t

)

))

≤4ǫCz
a

N
N
∑

i=1

f(rit)

(

H(Z̄i
t) exp

(

a
√

H(Z̄i
t)

)

+H(Zi,N
t ) exp

(

a

√

H(Zi,N
t )

))

+
4ǫCz
a

N
∑

i,j=1

f(rit)

(

H(Z̄j
t ) exp

(

a

√

H(Z̄j
t )

)

+H(Zj,N
t ) exp

(

a

√

H(Zj,N
t )

))

.

Then, by reconsidering the first expression

1

N

N
∑

i=1





1

N
f ′ (rit

)

Gi
t

N
∑

j=1

‖Zj,N
t − Z̄j

t ‖1





≤C1
N

N
∑

i=1

f(rit)G
i
t

+
2ǫ

N2
Cz

N
∑

i,j=1

f(rit)

(

H(Z̄j
t ) exp

(

a

√

H(Z̄j
t )

)

+H(Zj,N
t ) exp

(

a

√

H(Zj,N
t )

))

+
2ǫ

N2

4ǫCz
a

N

N
∑

i=1

f(rit)

(

H(Z̄i
t) exp

(

a
√

H(Z̄i
t)

)

+H(Zi,N
t ) exp

(

a

√

H(Zi,N
t )

))

+
2ǫ

N2

4ǫCz
a

N
∑

i,j=1

f(rit)

(

H(Z̄j
t ) exp

(

a

√

H(Z̄j
t )

)

+H(Zj,N
t ) exp

(

a

√

H(Zj,N
t )

))

This way, by (2.21) since

LXC1 ≤ c

2
, 2CzLX ≤ λ

64
and LXǫ

8Cz
a

≤ λ

64
,
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we get

1

N

N
∑

i=1





1

N
f ′ (rit

)

Gi
t

N
∑

j=1

‖Zj,N
t − Z̄j

t ‖1





≤ 1

N

c

2LX

N
∑

i=1

f(rit)G
i
t

+
ǫ

N2

λ

64LX

N
∑

i,j=1

f(rit)

(

H(Z̄j
t ) exp

(

a

√

H(Z̄j
t )

)

+H(Zj,N
t ) exp

(

a

√

H(Zj,N
t )

))

+
ǫ

N

λ

64LX

N
∑

i=1

f(rit)

(

H(Z̄i
t) exp

(

a
√

H(Z̄i
t)

)

+H(Zi,N
t ) exp

(

a

√

H(Zi,N
t )

))

+
ǫ

N2

λ

64LX

N
∑

i,j=1

f(rit)

(

H(Z̄j
t ) exp

(

a

√

H(Z̄j
t )

)

+H(Zj,N
t ) exp

(

a

√

H(Zj,N
t )

))

,

and we finally obtain “half” the result

1

N

N
∑

i=1

Gi
tf

′(rit)





LX

N





N
∑

j=1

‖Zj,N
t − Z̄j

t ‖1







− c

2

1

N

N
∑

i=1

f(rit)G
i
t

− ǫ

2

λ

16N

N
∑

i=1

f(rit)

[

H(Z̄i
t) exp

(

a
√

H(Z̄i
t)

)

+H(Zi,N
t ) exp

(

a

√

H(Zi,N
t )

)]

− ǫ

2

λ

16N2

N
∑

i=1

f(rit)





N
∑

j=1

H(Z̄j
t ) exp

(

a

√

H(Z̄j
t )

)

+

N
∑

j=1

H(Zj,N
t ) exp

(

a

√

H(Zj,N
t )

)



 ≤ 0.

Likewise, by (2.21), since

δLCC1 ≤ c

2
, 2CzδLC ≤ λ

64
and δLCǫ

8Cz
a

≤ λ

64
,

we obtain the second “half”

1

N

N
∑

i=1

δGi
tf

′(rit)





LC

N





N
∑

j=1

‖Zj,N
t − Z̄j

t ‖1







− c

2

1

N

N
∑

i=1

f(rit)G
i
t

− ǫ

2

λ

16N

N
∑

i=1

f(rit)

[

H(Z̄i
t) exp

(

a
√

H(Z̄i
t)

)

+H(Zi,N
t ) exp

(

a

√

H(Zi,N
t )

)]

− ǫ

2

λ

16N2

N
∑

i=1

f(rit)





N
∑

j=1

H(Z̄j
t ) exp

(

a

√

H(Z̄j
t )

)

+
N
∑

j=1

H(Zj,N
t ) exp

(

a

√

H(Zj,N
t )

)



 ≤ 0.

Eventually, we have proved
∑N

i=1 I
2,i
t ≤ 0.

Proof of Lemma 3.4. Since f ′(r) ≤ 1, we have by Cauchy-Schwarz inequality

E



Gi
tf

′(rit)





∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KX(Z̄i
t − Z̄j

t )−KX ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣









≤E
(

|Gi
t|2
)1/2

E







∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KX(Z̄i
t − Z̄j

t )−KX ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣

2






1/2

.
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By Lemma 3.2, we have for each i ≤ N , for all t ≥ 0, E[(Gi
t)

2
] ≤ CG,2.

Moreover, we notice that the (Z̄j
t )j are i.i.d with law µ̄t. Let’s denote Z̄t a generic

random variable of law µ̄t independent of Z̄i
t . The calculus of the right term of the

product has already been done in Subsection 1.4, and we have (1.10)

E







∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KX(Z̄i
t − Z̄j

t )−KX ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣

2





≤8L2

X

N
E(‖Z̄t‖21).

A similar calculation yields

E







∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KC(Z̄
i
t − Z̄j

t )−KC ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣

2





≤ 8L2

C

N
E(‖Z̄t‖21).

By Lemma 2.4, E
(

|X̄t|2 + |C̄t|2
)

≤ Cinit,2. In particular,

E
(

‖Z̄t‖21
)

= E

(

[

|X̄t|+ |C̄t|
]2
)

≤ 2E
(

|X̄t|2 + |C̄t|2
)

≤ 2Cinit,2.

Thus

E



Gi
tf

′(rit)





∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KX(Z̄i
t − Z̄j

t )−KX ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣







 ≤ LXC1/2
G,2

√

2Cinit,2
√

8

N
,

and likewise

E



Gi
tf

′(rit)





∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KC(Z̄
i
t − Z̄j

t )−KC ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣







 ≤ LCC1/2
G,2

√

2Cinit,2
√

8

N
.

3.4 Contraction in various regions of space

The goal of this section is to prove Lemma 3.3, i.e show that for each i ≤ N , for all
t > 0, we have the following control

EK̃i
t ≤ ξ

(

2 + δγ + LX + δLC − LC − 1 + LX

δ

)

EGi
t.

Recall

K̃i
t =G

i
t

[

2cf(rit) +
1

2
f ′′(rit)

(

2σ2
Xϕrc

(

|X i,N
t − X̄ i

t |
)2
)

+ f ′(rit)
(

(1 + γδ + LX + δLC)|X i,N
t − X̄ i

t | − |(X i,N
t )

3 − (X̄ i
t )

3|

+ (1 + LX + δLC − δ)|Ci,N
t − C̄i

t |+ (ǫCf,1 + Cf,2)σ2
Xϕrc

(

|X i,N
t − X̄ i

t |
)2

rit

)]

+ ǫf(rit)



4B̃ − λ

16
H̃(Z̄i

t)−
λ

16
H̃(Zi,N

t )− λ

16N

N
∑

j=1

H̃(Z̄j
t )−

λ

16N

N
∑

j=1

H̃(Zj,N
t )



 ,

which is a quantity that contains every term we have not yet dealt with. To prove
Lemma 3.3, we divide for each i ∈ {1, . . . , N} the space into three regions

Regi
1 =

{

(Z̄i
t , Z

i,N
t ) s.t. |X̄ i

t −X i,N
t | ≥ ξ and rit ≤ R

}

,

Regi
2 =

{

(Z̄i
t , Z

i,N
t ) s.t. |X̄ i

t −X i,N
t | < ξ and rit ≤ R1

}

,

Regi
3 =

{

(Z̄i
t , Z

i,N
t ) s.t. rit > R

}

,

MNA 3 (2023), paper 3.
Page 30/50

https://mna.episciences.org/

https://doi.org/10.46298/mna.9748
https://mna.episciences.org/


L. Colombani P. Le Bris

where R was given in Lemma 2.1, and consider

1

N

N
∑

i=1

EK̃i
t =

1

N

N
∑

i=1

(

E

(

K̃i
t1Regi

1

)

+ E

(

K̃i
t1Regi

2

)

+ E

(

K̃i
t1Regi

3

))

.

3.4.1 Region 1: ξ ≤ |X i,N
t − X̄ i

t | and rit ≤ R.

In this region of space, since ϕrc(|X i,N
t − X̄ i

t |) = 1, we have

K̃i
t1Regi

1

=1Regi

1

(

Gi
t

[

2cf(rit) + 2σ2
Xf

′′(rit) + f ′(rit) (ǫCf,1 + Cf,2)σ2
Xr

i
t

+ f ′(rit)(1 + γδ + LX + δLC)|X i,N
t − X̄ i

t |
]

−Gi
tf

′(rit)(δ − 1− LX − δLC)|Ci,N
t − C̄i

t | −Gi
tf

′(rit)|(X i,N
t )

3 − (X̄ i
t)

3|
+ ǫf(rit)4B̃

−ǫf(rit)





λ

16
H̃(Z̄i

t) +
λ

16
H̃(Zi,N

t ) +
λ

16N

N
∑

j=1

H̃(Z̄j
t ) +

λ

16N

N
∑

j=1

H̃(Zj,N
t )







 ,

and since H̃(z) ≥ 0, |X i,N
t − X̄ i

t | ≤ rit, δ >
1+LX

1−LC
(by the choice given in Subsection 2.4)

and 1 ≤ Gi
t we have

K̃i
t1Regi

1

≤1Regi

1

Gi
t

[

(2c+ 4ǫB̃)f(rit) + 2σ2
Xf

′′(rit)

+f ′(rit)
(

1 + δγ + LX + δLC + (ǫCf,1 + Cf,2)σ2
X

)

rit
]

.

Using the definition f given in (2.20) we get

2σ2
Xf

′′(rit) + f ′(rit)
(

1 + δγ + LX + LC + (ǫCf,1 + Cf,2)σ2
X

)

rit

= 2σ2
Xφ

′(rit)g(r
i
t) + 2σ2

Xφ(r
i
t)g

′(rit)

+ φ(rit)g(r
i
t)
(

1 + δγ + LX + δLC + (ǫCf,1 + Cf,2)σ2
X

)

rit

= 2σ2
Xφ(r

i
t)g

′(rit) = −(2c+ 4ǫB̃)Φ(rit).

Thus

(2c+ 4ǫB̃)f(rit) + 2σ2
Xf

′′(rit) + f ′(rit)
(

1 + δγ + LX + δLC + (ǫCf,1 + Cf,2)σ2
X

)

rit

= (2c+ 4ǫB̃)f(rit)− (2c+ 4ǫB̃)Φ(rit) (3.12)

≤ 0.

Eventually, in this region of space

K̃i
t1Regi

1

≤ 0.

MNA 3 (2023), paper 3.
Page 31/50

https://mna.episciences.org/

https://doi.org/10.46298/mna.9748
https://mna.episciences.org/


Propagation of chaos in mean field networks of FHN neurons

3.4.2 Region 2: |X i,N
t − X̄ i

t | < ξ and rit ≤ R.

In this region, we can write K̃i
t as

K̃i
t1Regi

2

= 1Regi

2

Gi
t

[

2cf(rit) + ϕrc

(

|X i,N
t − X̄ i

t |
)2
[

2σ2
Xf

′′(rit) + (ǫCf,1 + Cf,2)σ2
Xr

i
tf

′(rit)
]

+ f ′(rit)
(

(1 + γδ + LX + δLC)|X i,N
t − X̄ i

t | − (δ − 1− LX − δLC)|Ci,N
t − C̄i

t |
) ]

− 1Regi

2

Gi
tf

′(rit)|(X i,N
t )

3 − (X̄ i
t)

3|

+ 1Regi

2

ǫf(rit)4B̃

− ǫf(rit)1Regi

2





λ

16
H̃(Z̄i

t) +
λ

16
H̃(Zi,N

t ) +
λ

16N

N
∑

j=1

H̃(Z̄j
t ) +

λ

16N

N
∑

j=1

H̃(Zj,N
t )



 .

Since rit = |X i,N
t −X̄ i

t |+δ|Ci,N
t − C̄i

t | and |X i,N
t −X̄ i

t | < ξ, we have |Ci,N
t − C̄i

t | ≥ (rit−ξ)/δ.
Since δ >

1 + LX

1− LC
, we obtain

K̃i
t1Regi

2

≤1Regi

2

Gi
t

[

2cf(rit) + ϕrc

(

|X i,N
t − X̄ i

t |
)2
[

2σ2
Xf

′′(rit) + (ǫCf,1 + Cf,2) σ2
Xr

i
tf

′(rit)
]

+ f ′(rit)

(

(1 + γδ + LX + δLC)ξ − (δ − δLC − 1− LX)
rit − ξ

δ

)

]

+ ǫf(rit)1Regi

2

4B̃

≤ϕrc

(

|X i,N
t − X̄ i

t |
)2

Gi
t1Regi

2

[

2σ2
Xf

′′(rit) + (ǫCf,1 + Cf,2)σ2
Xr

i
tf

′(rit)
]

+ 1Regi

2

Gi
tf

′(rit)ξ

[

1 + γδ + LX + δLC + 1− LC − 1 + LX

δ

]

+ 1Regi

2

Gi
t

(

(2c+ 4ǫB̃)f(rit)− ritf
′(rit)

(

1− LC − 1 + LX

δ

))

.

By (3.12),

2σ2
Xf

′′(rit) + (ǫCf,1 + Cf,2)σ2
Xr

i
tf

′(rit) = −(2c+ 4ǫB̃)Φ(rit)− f ′(rit)r
i
t (1 + δγ + LX + LC)

≤ 0,

and by Lemma 2.6

2c+ 4ǫB̃ ≤
(

1− LC − 1 + LX

δ

)

min
r∈(0,R]

f ′(r)r

f(r)
,

we obtain

K̃i
t1Regi

2

≤1Regi

2

Gi
tf

′(rit)ξ

[

1 + γδ + LX + δLC + 1− LC − 1 + LX

δ

]

.

Finally, since f ′(r) ≤ 1,

EK̃i
t1Regi

2

≤ ξ

(

2 + δγ + LX + δLC − LC − 1 + LX

δ

)

EGi
t.
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3.4.3 Region 3: rit ≥ R.

In this region of space f ′ = f ′′ = 0 and f is constant, and we therefore have

K̃i
t1Regi

3

=f(rit)1Regi

3

[

2cGi
t + 4ǫB̃

−λǫ
16



H̃(Z̄i
t) + H̃(Zi,N

t ) +
1

N

N
∑

j=1

H̃(Z̄j
t ) +

1

N

N
∑

j=1

H̃(Zj,N
t )







 .

Since Gi
t = 1+ǫH̃(Z̄i

t)+ǫH̃(Zi,N
t )+ ǫ

N

∑N
j=1 H̃(Zj,N

t )+ ǫ
N

∑N
j=1 H̃(Z̄j

t ) by definition (2.26),
we can write

K̃i
t1Regi

3

=f(rit)1Regi

3

[

2c+ 4ǫB̃

+ǫ

(

2c− λ

16

)



H̃(Z̄i
t) + H̃(Zi,N

t ) +
1

N

N
∑

j=1

H̃(Z̄j
t ) +

1

N

N
∑

j=1

H̃(Zj,N
t )







 .

Since c ≤ λ/32 by the choice given in Subsection 2.4, we obtain

K̃i
t1Regi

3

≤ f(rit)1Regi

3

[

2c+ 4ǫB̃ − ǫ

(

λ

16
− 2c

)

(H(Z̄i
t) +H(Zi,N

t ))

]

.

We have chosen R such that, for z, z′ satisfying r ≥ R, we have H(z) +H(z′) ≥ 80 B̃
λ by

Lemma 2.1 (iv). Therefore

K̃i
t1Regi

3

≤f(rit)1Regi

3

(

2c+ 4ǫB̃ − ǫ

(

λ

16
− 2c

)

80
B̃

λ

)

=f(rit)1Regi

3

(

2c

(

1 + 80
ǫB̃

λ

)

− ǫB̃

)

Lemma 2.6 and more specifically the inequality

c ≤ 1

2

ǫB̃

1 + 80 ǫB̃
λ

=
λ

160

80ǫB̃
λ

1 + 80ǫB̃
λ

yields the desired result: K̃i
t1Regi

3

≤ 0.

A Various technical lemmas

A.1 On Itô’s formula for the L1 norm

Let us here detail the calculations leading to the use of Itô’s formula to derive the
dynamics of the L1 norm of the processes. At first glance it should not be possible, as the
absolute value is not a twice continuously differentiable function. However, in our case,
we consider a diffusion coefficient which is zero around the point of discontinuity of
the function. The following lemma is based on the calculations done in Lemma 7 of [8],
and relies on an approximation of the absolute value function and usual convergence
lemmas. We here give a quite general result.

Lemma A.1. Let (Xt, X
′
t, Ct, C

′
t) be continuous processes and F,G : R

+ × R
4 7→ R

be two continuous functions. Assume furthermore that there is RG > 0 such that
G(t, x, x′, c, c′) = 0 if |x− x′| < RG and that G is bounded. Consider the dynamics

d(Xt −X ′
t) = F (t,Xt, X

′
t, Ct, C

′
t)dt+G(t,Xt, X

′
t, Ct, C

′
t)dBt,
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where B is a Brownian motion. Then almost surely for all t ≥ 0

d|Xt −X ′
t| =sign(Xt −X ′

t)F (t,Xt, X
′
t, Ct, C

′
t)dt

+ sign(Xt −X ′
t)G(t,Xt, X

′
t, Ct, C

′
t)dBt, (A.1)

where

sign(x) =







1 if x > 0

0 if x = 0

−1 if x < 0.

Proof. By the standard Itô’s formula for twice continuously differentiable functions, we
have

d(Xt −X ′
t)

2
=2(Xt −X ′

t)F (t,Xt, X
′
t, Ct, C

′
t)dt+ 2(Xt −X ′

t)G(t,Xt, X
′
t, Ct, C

′
t)dBt

+G2(t,Xt, X
′
t, Ct, C

′
t)dt.

Consider, for η > 0 (which in the end will go to 0), the function ψη(r) = (r + η)
1/2 which

is smooth on [0,∞[ and satisfies

∀r > 0, lim
η→0

ψη(r) = r1/2, lim
η→0

2ψ′
η(r) = r−1/2, lim

η→0
4ψ′′

η (r) = −r−3/2

and thus lim
η→0

2rψ′′
η (r) + ψ′

η(r) = 0 and ∀r ∈ R, lim
η→0

2rψ′
η(r

2) = sign(r).

Then

dψη

(

(Xt −X ′
t)

2
)

=2(Xt −X ′
t)ψ

′
η

(

(Xt −X ′
t)

2
)

F (t,Xt, X
′
t, Ct, C

′
t)dt

+ 2(Xt −X ′
t)ψ

′
η

(

(Xt −X ′
t)

2
)

G(t,Xt, X
′
t, Ct, C

′
t)dBt

+ ψ′
η

(

(Xt −X ′
t)

2
)

G2(t,Xt, X
′
t, Ct, C

′
t)dt

+ 2(Xt −X ′
t)

2
ψ′′
η

(

(Xt −X ′
t)

2
)

G2(t,Xt, X
′
t, Ct, C

′
t)dt,

which is just another way of writing that for all t ≥ 0

ψη

(

(Xt −X ′
t)

2
)

= ψη

(

(X0 −X ′
0)

2
)

+

∫ t

0

2(Xs −X ′
s)ψ

′
η

(

(Xs −X ′
s)

2
)

F (s,Xs, X
′
s, Cs, C

′
s)ds

+

∫ t

0

2(Xs −X ′
s)ψ

′
η

(

(Xs −X ′
s)

2
)

G(s,Xs, X
′
s, Cs, C

′
s)dBs

+

∫ t

0

(

ψ′
η

(

(Xs −X ′
s)

2
)

+ 2(Xs −X ′
s)

2
ψ′′
η

(

(Xs −X ′
s)

2
))

G2(s,Xs, X
′
s, Cs, C

′
s)ds

We now compute the limit of each term. First

ψη

(

(Xt −X ′
t)

2
)

−−−→
η→0

|Xt −X ′
t| and ψη

(

(X0 −X ′
0)

2
)

−−−→
η→0

|X0 −X ′
0|.

Then

∣

∣

∣2(Xs −X ′
s)ψ

′
η

(

(Xs −X ′
s)

2
)∣

∣

∣ =
|Xs −X ′

s|
√

(Xs −X ′
s)

2
+ η

≤ 1.
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Thus for all t ≥ 0, by dominated convergence (recall F is a continuous function, thus
integrable on [0, t]), we obtain almost surely

∫ t

0

2(Xs −X ′
s)ψ

′
η

(

(Xs −X ′
s)

2
)

F (s,Xs, X
′
s, Cs, C

′
s)ds

−−−→
η→0

∫ t

0

sign(Xs −X ′
s)F (s,Xs, X

′
s, Cs, C

′
s)ds,

and by Theorem 2.12 Chapter 4 of [26], almost surely we have

∫ t

0

2(Xs −X ′
s)ψ

′
η

(

(Xs −X ′
s)

2
)

G(s,Xs, X
′
s, Cs, C

′
s)dBs

−−−→
η→0

∫ t

0

sign(Xs −X ′
s)G(s,Xs, X

′
s, Cs, C

′
s)dBs,

Finally, since G(s,Xs, X
′
s, Cs, C

′
s) = 0 if |Xs −X ′

s| < RG and

ψ′
η

(

(Xs −X ′
s)

2
)

+ 2(Xs −X ′
s)

2
ψ′′
η

(

(Xs −X ′
s)

2
)

=
1

2







1
√

(Xs −X ′
s)

2 + η
− (Xs −X ′

s)
2

(

(Xs −X ′
s)

2
+ η
)3/2







=
1

2

η
(

(Xs −X ′
s)

2
+ η
)3/2

≤1

2

η

|Xs −X ′
s|3
,

by dominated convergence we almost surely have

∫ t

0

(

ψ′
η

(

(Xs −X ′
s)

2
)

+ 2(Xs −X ′
s)

2
ψ′′
η

(

(Xs −X ′
s)

2
))

G2(s,Xs, X
′
s, Cs, C

′
s)ds −−−→

η→0
0

Thus for all t ≥ 0 we almost surely have (A.1), and continuity allows us to conclude that
we almost surely have for all t ≥ 0 (A.1).

A.2 On Lemma 2.1

Lemma A.2. For all z = (x, c), z′ = (x′, c′) ∈ R
d, denoting r(z, z′) = |x− x′|+ δ|c− c′|

r(z, z′)
2 ≤ 16(1 + δ2)

min (γ, 1)
(H(z) +H(z′)) , (A.2)

so that, in particular, for any constant B > 0, if r(z, z′) ≥ R =

√

1280(1 + δ2)B

λmin(γ, 1)
, then

λH(z) + λH(z′) ≥ 80B.

Proof. We have H(z) ≥ γ
4x

2 + c2

4 ≥ 1
4 min (γ, 1)

(

x2 + c2
)

. Thus

r(z, z′)
2
=(|x− x′|+ δ|c− c′|)2

≤4(1 + δ2)(x2 + c2) + 4(1 + δ2)(x′2 + c′2)

≤16
(1 + δ2)

min (γ, 1)
(H(z) +H(z′))
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A.3 Proof of Lyapunov’s property of H and its consequences

Lyapunov’s property

Proof of Lemma 2.2. We write the proof for (2.3), as it also yields (2.4) by considering
µ to be the empirical measure. We notice

∂CH = c+ α and ∂XH = γx+ β,

so

LµH(z) =∂xH(z)(x− x3) + ∂xH(z)KX ∗ µ(z)− c∂cH(z)

+ ∂cH(z)KC ∗ µ(z) + σ2
Xγ

2
+
σ2
C

2

=(γx+ β)(x − x3)− c(c+ α) + (γx+ β)KX ∗ µ(z)

+ (c+ α)KC ∗ µ(z) + σ2
Xγ

2
+
σ2
C

2
.

First, we focus on the interaction terms. We have

|KX ∗ µ(z)| ≤
∫

R2

|KX(z − z′)|µ(dz′)

≤
∫

R2

LX(‖z‖1 + ‖z′‖1)µ(dz′).

Hence,

(γx+ β)KX ∗ µ(z)
≤LX(γ|x|+ β)(|x| + |c|+ Eµ(|X |) + Eµ(|C|))
≤LX

(

γ|x|2 + γ|x||c|+ γ|x|Eµ(|X |) + γ|x|Eµ(|C|) + β|x|+ β|c|+ βEµ(|X |)
+βEµ(|C|)) ,

and using Young’s inequality ab ≤ α
2 a

2 + 1
2α b

2 (α = 16 when we separate the x and c
terms, and α = 1 otherwise on the various terms) we get

(γx+ β)KX ∗ µ(z)

≤LX

(

γ|x|2 + 8γ2|x|2 + |c|2
32

+
γ

2
|x|2 + γ

2
Eµ(|X |)2 + 8γ2|x|2 + Eµ(|C|)2

32
+
β2

2

+
|x|2
2

+ 8β2 +
|c|2
32

+
β2

2
+

1

2
Eµ(|X |)2 + 8β2 +

Eµ(|C|)2
32

)

=LX

(

17β2 + |x|2
(

1

2
+

3

2
γ + 16γ2

)

+
|c|2
16

+ Eµ(|X |)2
(

γ

2
+

1

2

)

+
Eµ(|C|)2

16

)

.

Likewise

(c+ α)KC ∗ µ(z) ≤LC

(

17α2 +
17

2
|x|2 + |c|2

(

3

2
+

3

32

)

+
17

2
Eµ(|X |)2

+Eµ(|C|)2
(

1

2
+

1

32

))

.

The idea is to bound λH(z) + LµH(z), by distinguishing 3 types of terms: we isolate
terms in Eµ(|C|)2 − c2, Eµ(|X |)2 − x2, and we group polynomial terms. Then, we notice
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the polynomial is upper bounded by a constant A. Thus

λH(z) + LµH(z)− σ2
Xγ

2
− σ2

C

2

=λ

(

1

2
γx2 + βx +

1

2
c2 + αc+H0

)

+ (γx+ β)(x − x3)− c(c+ α)

+ (γx+ β)KX ∗ µ(z) + (c+ α)KC ∗ µ(z)
≤
(

λH0 + 17β2LX + 17α2LC

)

− γx4 − βx3 + (1 + λ)βx

+

(

(1 +
λ

2
)γ + LX

(

1 + 2γ + 16γ2
)

+ 17LC

)

x2

+

(

LC

8
+ LC

(

2 +
1

8

)

−
(

1− λ

2

))

c2 − (1− λ)αc

+

(

LX

16
+
LC

2
+
LC

32

)

(

Eµ(|C|)2 − c2
)

+

(

γ

2
LX +

1

2
LX +

17

2
LC

)

(

Eµ(|X |)2 − x2
)

.

Provided that
LX

8
+ LC

(

2 +
1

8

)

< 1− λ

2
,

there is A ≥ 0 such that

−γx4−βx3 + (1 + λ)βx +

(

(1 +
λ

2
)γ + LX

(

1 + 2γ + 16γ2
)

+ 17LC

)

x2

+

(

LC

8
+ LC

(

2 +
1

8

)

−
(

1− λ

2

))

c2 − (1− λ)αc ≤ A.

Hence the result

LµH(z̄) ≤ B + (αXLX + βXLC)
(

Eµ(|X |)2 − x̄2
)

+ (αCLX + βCLC)
(

Eµ(|C|)2 − c̄2
)

− λH(z̄).

First consequences

Proof of Proposition 2.3. Inequality (2.5) simply relies on the sum of (2.4) for each i and

the fact that Lj,N
(

H
(

Zi,N
t

))

= 0 for i 6= j

1

N

N
∑

i=1

LN
(

H
(

Zi,N
t

))

=
1

N

N
∑

i=1

Li,N
(

H
(

Zi,N
t

))

≤ 1

N

N
∑

i=1



B + (αXLX + βXLC)





(

1

N

N
∑

k=1

|Xk,N
t |

)2

− (X i,N
t )

2





+ (αCLX + βCLC)





(

1

N

N
∑

k=1

|Ck,N
t |

)2

− (Ci,N
t )

2



− λH
(

Zi,N
t

)





≤B − λ
1

N

N
∑

i=1

H
(

Zi,N
t

)

.
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The last inequality uses the fact that
(

1
N

∑N
i=1 |yi|

)2

− 1
N

∑N
i=1 (yi)

2 ≤ 0 for all (yi)1≤i≤N ∈
R

N .

Bounds on the second moments of processes We can now prove the uniform in
bounds on the second moments of X i,N

t , Ci,N
t , X̄ i

t and C̄i
t from (2.3) and (2.4). Let’s

notice that (X i,N,κ
t , Ci,N,κ

t )i coincides with (X i,N
t , Ci,N

t )i before the time Tκ defined in
Subsection 1.3. Since our interest is in (X i,N

t , Ci,N
t )i, we chose to give the proof of the

Proposition 1.6. The proof of the Lemma 1.5 is very similar.

Proof of Proposition 1.6. KX and KC are Lipschitz with constants LX and LC respec-
tively. We do not assume any bounds on these constants. We assume for each i ≤ N ,
E(|X i,N

0 |2) < +∞ and E(|Ci,N
0 |2) < +∞. We have

d

(

eλt

N

N
∑

i=1

H
(

Zi,N
t

)

)

= λ
eλt

N

N
∑

i=1

H
(

Zi,N
t

)

dt+ eλtLN

(

1

N

N
∑

i=1

H
(

Zi,N
t

)

)

dt+ dMt,

whereMt is a local martingale. Using (2.4)

d

(

eλt

N

N
∑

i=1

H
(

Zi,N
t

)

)

= Atdt+ dMt,

where At ≤ Beλt. Let τn be an increasing sequence of localizing stopping times con-
verging to ∞ forMt

E

(

eλt∧τn

N

N
∑

i=1

H
(

Zi,N
t∧τn

)

)

≤E

(

1

N

N
∑

i=1

H
(

Zi,N
0

)

)

+ E

(∫ t∧τn

0

Beλsds

)

≤E

(

1

N

N
∑

i=1

H
(

Zi,N
0

)

)

+B
E
(

eλt∧τn
)

− 1

λ

≤E

(

1

N

N
∑

i=1

H
(

Zi,N
0

)

)

+Bmax

(

eλt − 1

λ
,
1

|λ|

)

,

where the maximum on this last inequality depends on the sign of λ. By Fatou’s lemma,
we obtain

eλtE

(

1

N

N
∑

i=1

H
(

Zi,N
t

)

)

=E

(

lim inf
n→∞

eλt∧τn

N

N
∑

i=1

H
(

Zi,N
t∧τn

)

)

≤ lim inf
n→∞

E

(

eλt∧τn

N

N
∑

i=1

H
(

Zi,N
t∧τn

)

)

≤E

(

1

N

N
∑

i=1

H
(

Zi,N
0

)

)

+Bmax

(

eλt − 1

λ
,
1

|λ|

)

.

Hence the various bounds on E

(

|X i,N
t |2

)

and E

(

|Ci,N
t |2

)

, since by Lemma 2.1 (i) we

have

EH
(

Zi,N
t

)

≥ γ

4
E

(

|X i,N
t |2

)

+
1

4
E

(

|Ci,N
t |2

)

and EH
(

Zi,N
0

)

≤ γE
(

|X i,N
0 |2

)

+ E

(

|Ci,N
0 |2

)

+
3

2
H0.

These bounds are uniform in time provided λ > 0, i.e LX

8 + LC

(

2 + 3
32

)

< 1.
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Proof of Proposition 1.7 and Lemma 2.4. The proof is done in exactly the same way as
the proof of Proposition 1.6 above using (2.3).

A.4 Proof of Lemma 2.6

We now prove that there are constants c, ǫ and δ such that

c+ 2ǫB̃ ≤σ
2
X

2

(

∫ R

0

Φ(s)φ(s)
−1
ds

)−1

(A.3)

2c+ 4ǫB̃ ≤
(

1− LC − 1 + LX

δ

)

min
r∈(0,R]

f ′(r)r

f(r)
(A.4)

c ≤ λ

160

80ǫB̃
λ

1 + 80ǫB̃
λ

(A.5)

δ >
1 + LX

1− LC
(A.6)

• Since for all u ≥ 0, 0 < φ (u) ≤ 1, we have 0 < Φ (s) =
∫ s

0 φ (u) du ≤ s, i.e s/Φ (s) ≥ 1.
Therefore

inf
r∈(0,R]

rφ (r)

Φ (r)
≥ inf

r∈(0,R]
φ (r) = φ (R) .

It is thus sufficient for (A.4) to have

2c+ 4ǫB̃ ≤ 1

2

(

1− LC − 1 + LX

δ

)

φ (R) .

• We have

φ (r) ≤ exp

(

− 1

4σ2
X

r2
)

.

So

Φ (r) ≤
∫ ∞

0

exp

(

− r2

4σ2
X

)

dr = σX
√
π.

Then
∫ R

0

Φ (r)

φ (r)
dr ≤ σX

√
πR

1

φ (R)
.

It is thus sufficient for (A.3) that

c+ 2ǫB̃ ≤ σX
2
√
π

φ (R)

R
.

• The various conditions involving c invite us to consider 2ǫB̃ = ηc. Then

c ≤ λ

160

80ǫB̃
λ

1 + 80ǫB̃
λ

⇐⇒ c ≤ λ

160

40ηc

λ+ 40ηc

⇐⇒ 1 ≤ λ
η

4λ+ 160ηc
(since c ≥ 0)

⇐⇒ c ≤ λ

160

η − 4

η
.
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• We choose to write

δ = (1 + δ̃)
1 + LX,max

1− LC,max
>

1 + LX

1− LC

• Let us assume, for simplicity, that ǫ ≤ 1. It is sufficient for this later condition to
have

c ≤ 2B̃

η
.

• The appearance of φ (R) suggests we should try to minimize it. We recall

φ(r) = exp

(

− 1

4σ2
X

(

1 + δγ + LX + δLC + (ǫCf,1 + Cf,2)σ2
X

)

r2
)

≥ exp

(

− 1

4σ2
X

(

1 + δγ + LX + δLC + (Cf,1 + Cf,2) σ2
X

)

r2
)

.

It is therefore sufficient for (A.3) to have

c ≤ 1

1 + η

σX
2
√
π

1

R
exp

(

− 1

4σ2
X

(

1 + δγ + LX + δLC + (Cf,1 + Cf,2)σ2
X

)

R2

)

,

and for (A.4) to have

c ≤ 1

2(1 + η)

(

1− LC − 1 + LX

δ

)

× exp

(

− R2

4σ2
X

(

1 + δγ + LX + δLC + (Cf,1 + Cf,2)σ2
X

)

)

.

• Finally, we bound LX and LC by either 0 or LX,max and LC,max, to obtain bounds
on c independent of LX and LC .

A.5 Proof of Lemma 2.7

Let z, z′ ∈ R
2.

Proof of control of the L1 distance: We have

‖z − z′‖1 = |x− x′|+ |c− c′| ≤ 1

min (δ, 1)
(|x− x′|+ δ|c− c′|) = 1

min (δ, 1)
r(z, z′).

If r(z, z′) ≤ 1 ≤ R, we have, using Lemma 2.6

r(z, z′) ≤ f(r)

f ′
−(R)

≤ f(r)

φ(R)g(R)

(

1 + ǫH̃(z) + ǫH̃(z′)
)

.

If r(z, z′) ≥ 1, we have, using (A.2)

r(z, z′) ≤r(z, z′)2

≤ 16(1 + δ2)

ǫmin (γ, 1)
(ǫH(z) + ǫH(z′))

≤ 16(1 + δ2)

ǫmin (γ, 1)

f(r)

f(1)
(1 + ǫH(z) + ǫH(z′))

≤ 16(1 + δ2)

ǫmin (γ, 1)

f(r)

φ(R)g(R)

(

1 + ǫH̃(z) + ǫH̃(z′)
)

.

Thus

‖z − z′‖1 ≤ 1

min (δ, 1)

1

φ(R)g(R)
max

(

16(1 + δ2)

ǫmin (γ, 1)
, 1

)

f(r(z, z′))
(

1 + ǫH̃(z) + ǫH̃(z′)
)

.
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Proof of control of the L2 distance: We have

r(z, z′)
2
= (|x− x′|+ δ|c− c′|)2 ≥|x− x′|2 + δ2|c− c′|2

≥min
(

1, δ2
) (

|x− x′|2 + |c− c′|2
)

.

If r(z, z′) ≥ 1, we have, using (A.2)

r(z, z′)
2 ≤ 16(1 + δ2)

ǫmin (γ, 1)

f(r)

φ(R)g(R)

(

1 + ǫH̃(z) + ǫH̃(z′)
)

.

If r(z, z′) ≤ 1 ≤ R, we have, using Lemma 2.6

r(z, z′)
2 ≤ r(z, z′) ≤ f(r)

f ′
−(R)

≤ f(r)

φ(R)g(R)

(

1 + ǫH̃(z) + ǫH̃(z′)
)

.

Thus

‖z − z′‖22 ≤ 1

min (δ2, 1)

1

φ(R)g(R)
max

(

16(1 + δ2)

ǫmin (γ, 1)
, 1

)

f(r(z, z′))
(

1 + ǫH̃(z) + ǫH̃(z′)
)

.

Proof of the second control of the L1 distance: We have, if r(z, z′) ≤ 1 ≤ R

r(z, z′) ≤ f(r)

f ′
−(R)

≤ f(r)

φ(R)g(R)

(

1 + ǫ
√

H(z) + ǫ
√

H(z′)
)

.

and, if r(z, z′) ≥ 1, recall Lemma 2.1.

‖z − z′‖1 ≤
√

4

γ
H(z) +

√

4

γ
H(z′) +

√

4H(z) +
√

4H(z′)

≤4max

(
√

1

γ
, 1

)

(

√

H(z) +
√

H(z′)
)

≤4

ǫ
max

(
√

1

γ
, 1

)

f(r)

φ(R)g(R)

(

1 + ǫ
√

H(z) + ǫ
√

H(z′)
)

,

and thus

‖z − z′‖1 ≤ 1

φ(R)g(R)
max

(

1,
4

ǫ
max

(
√

1

γ
, 1

))

f(r(z, z′))
(

1 + ǫ
√

H(z) + ǫ
√

H(z′)
)

.

Independence with respect to LX and LC The a priori bounds LX ∈ [0, LX,max] and
LC ∈ [0, LC,max] allow us to bound φ(R) independently of LC and LX by φmin (and we
also use g(R) ≥ 1

2 ), thus giving us constant C1, C2 and Cz independent of LC and LX .

A.6 Proof of Lemmas 3.2 and 3.7

Proof of Lemma 3.2. Let’s prove there exists a uniform in time bound on E(Gi
t) and

E[(Gi
t)

2
]. First, let’s recall the definition of G from(2.26)

Gi
t = 1 + ǫH̃(Z̄i

t) + ǫH̃(Zi,N
t ) +

ǫ

N

N
∑

j=1

H̃(Zj,N
t ) +

ǫ

N

N
∑

j=1

H̃(Z̄j
t ).

The idea is to bound the different expectations in terms of the expectations at time t = 0.
Since E(eã(|X0|+|C0|)) is finite, we know that for each k ∈ N, E(|X0|k) and E(|C0|k) are

MNA 3 (2023), paper 3.
Page 41/50

https://mna.episciences.org/

https://doi.org/10.46298/mna.9748
https://mna.episciences.org/


Propagation of chaos in mean field networks of FHN neurons

also finite. We deduce that for each k ∈ N, for each j ≤ N , E[H(Z̄j
0)

k
] and E[H(Zj,N

0 )
k
]

are finite.
In fact, to bound uniformly in time the first moment, we only have to boundE(H̃(Zj,N

t ))

and E(H̃(Z̄j
t )) for each j ≤ N . Let’s begin with Z̄j. By (2.16), we have

d

dt
E

[

H̃
(

Z̄j
t

)]

≤B̃ − λ

4
E

[

H̃
(

Z̄j
t

)]

.

By using Itô’s formula on eλt/4H̃
(

Z̄j
t

)

and the bound above, we obtain

E

[

H̃
(

Z̄j
t

)]

≤4B̃

λ
+ e−

λ
4 t

(

E

[

H̃
(

Z̄j
0

)]

− 4B̃

λ

)

≤max

(

E

[

H̃
(

Z̄j
0

)]

,
4B̃

λ

)

.

By (2.9), in Lemma 2.5, we deduce the following inequality and we apply Cauchy-
Schwarz inequality

E

[

H̃
(

Z̄j
0

)]

≤E

[

H
(

Z̄j
0

)

exp

(

a

√

H
(

Z̄j
0

)

)]

≤E

[

H
(

Z̄j
0

)2
]1/2

E

[

exp

(

2a

√

H
(

Z̄j
0

)

)]1/2

. (A.7)

We already know E

[

H
(

Z̄j
0

)2
]

is bounded. Now, it is enough to prove that there exist C

such that for all z ∈ R
2

exp
(

2a
√

H (z)
)

≤ C × eã(|x|+|c|).

In fact, from the definition of H in (2.1), we have

2
√

H(z) =
√
2

√

γ

(

x+
β

γ

)2

+ (c+ α)
2
+H0

≤
√

2γ

∣

∣

∣

∣

x+
β

γ

∣

∣

∣

∣

+
√
2 |c+ α|+

√

H0

≤
√

2γ|x|+
√
2|c|+ 1

a
lnC,

where C is a constant independent of z. Finally, since max (a
√
2γ, a

√
2) ≤ ã, we have

exp
(

2a
√

H (z)
)

≤ C × eã(|x|+|c|).

Then, E

[

exp

(

2a

√

H
(

Z̄j
0

)

)]

is bounded and we deduce E(H̃(Z̄j
t )) is bounded for each

j ≤ N and all t ≥ 0.

The same calculations can be done for Zj,N
t . By (2.19), we have

LN

(

1

N

N
∑

i=1

H̃(Zi,N
t )

)

≤ B̃ − λ

4

(

1

N

N
∑

i=1

H̃(Zi,N
t )

)

.
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In particular,

d

dt

[

E

(

1

N

N
∑

i=1

H̃(Zi,N
t )

)]

≤E

[

LN

(

1

N

N
∑

i=1

H̃(Zi,N
t )

)]

≤ B̃ − λ

4
E

(

1

N

N
∑

i=1

H̃(Zi,N
t )

)

,

and we can use the same method as above.
Finally, we have proved that for each j ≤ N , E(H̃(Zj,N

t )) and E(H̃(Z̄j
t )) are bounded

uniformly in time. Thus, E(Gi
t) is bounded uniformly in time (and in N ).

To bound the second moment of Gi
t, we have to bound each type of the following

expectations E[H̃(Zj1,N
t )H̃(Zj2,N

t )], E[H̃(Zj1,N
t )H̃(Z̄j2

t )], E[H̃(Z̄j1
t )H̃(Z̄j2

t )], E[H̃(Zj,N
t )

2
]

and E[H̃(Z̄j
t )

2
]. By Cauchy-Schwarz inequality, it is in fact enough to bound E[H̃(Zj,N

t )
2
]

and E[H̃(Z̄j
t )

2
].

First, by the definition of H̃ in (2.8),

H̃(z)
2
=

(

2

a2
exp

(

a
√

H(z)
)(

a
√

H(z)− 1
)

+
2

a2

)2

≤2
22

a4
exp

(

2a
√

H(z)
)(

a
√

H(z)− 1
)2

+ 2
22

a4

≤ 8

a4
exp

(

2a
√

H(z)
)

(

2a2H(z) + 2
)

+
8

a4
.

As for the first moment, the study of Zj,N
t is very similar to the one of Z̄j

t . Here, we only
focus on the second one.

Using Cauchy-Schwarz inequality, bounds on E

[

H(Z̄j
t )

2
]

and E

[

exp

(

4a

√

H(Z̄j
t )

)]

are sufficient to bound E[H̃(Z̄j
t )

2
]. The latter has already been bounded uniformly in

time, and the former can be obtained by the same calculations as previously, replacing
a by 4a (and thus assuming ã ≥ 4

√
2amax(

√
γ, 1), which we do).

Finally, we deduce E

(

(Gi
t)

2
)

is bounded uniformly in time.

Proof of Lemma 3.7. Using ∂XH(z) = γx+ β, we have

∣

∣

∣∂XH̃(Zi,N
t )− ∂XH̃(Z̄i

t)
∣

∣

∣

=

∣

∣

∣

∣

(

γX i,N
t + β

)

exp

(

a

√

H(Zi,N
t )

)

−
(

γX̄ i
t + β

)

exp

(

a
√

H(Z̄i
t)

)∣

∣

∣

∣

≤
∣

∣

∣γX
i,N
t − γX̄ i

t

∣

∣

∣

(

exp

(

a

√

H(Zi,N
t )

)

+ exp

(

a
√

H(Z̄i
t)

))

+
∣

∣γX̄ i
t + β

∣

∣

∣

∣

∣

∣

exp

(

a

√

H(Zi,N
t )

)

− exp

(

a
√

H(Z̄i
t)

)∣

∣

∣

∣

.

Since
∣

∣

∣X
i,N
t − X̄ i

t

∣

∣

∣ ≤ rit,

∣

∣

∣
γX i,N

t − γX̄ i
t

∣

∣

∣

(

exp

(

a

√

H(Zi,N
t )

)

+ exp

(

a
√

H(Z̄i
t)

))

≤γrit
(

exp

(

a

√

H(Zi,N
t )

)

+ exp

(

a
√

H(Z̄i
t)

))

By Lemma 2.1 (ii), we have H(z) ≥ 1
2 min

(

1
γ , 1
)

(γx+ β)2. By the mean value theorem,

for all y1 ≤ y2 in R, there exists y3 ∈ [y1, y2] such that eay1 − eay2 = a(y1 − y2)e
ay3 . In
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particular, we have the following control |eay1 − eay2 | ≤ a|y1 − y2|(eay1 + eay2). Thus

∣

∣γX̄ i
t + β

∣

∣

∣

∣

∣

∣

exp

(

a

√

H(Zi,N
t )

)

− exp

(

a
√

H(Z̄i
t)

)∣

∣

∣

∣

≤ a

√

√

√

√

2H(Z̄i
t)

min
(

1
γ , 1
)

∣

∣

∣

∣

√

H(Zi,N
t )−

√

H(Z̄i
t)

∣

∣

∣

∣

(

exp

(

a

√

H(Zi,N
t )

)

+ exp

(

a
√

H(Z̄i
t)

))

≤ a
√

2max (γ, 1)
∣

∣

∣H(Zi,N
t )−H(Z̄i

t)
∣

∣

∣

(

exp

(

a

√

H(Zi,N
t )

)

+ exp

(

a
√

H(Z̄i
t)

))

.

Then by the definition of H we get
∣

∣

∣H(Zi,N
t ) −H(Z̄i

t)
∣

∣

=

∣

∣

∣

∣

1

2
γ
(

(X i,N
t )

2 − (X̄ i
t)

2
)

+ β(X i,N
t − X̄ i

t) +
1

2

(

(Ci,N
t )

2 − (C̄i
t)

2
)

+ α(Ci,N
t − C̄i

t)

∣

∣

∣

∣

≤1

2
γ
∣

∣

∣
X i,N

t − X̄ i
t

∣

∣

∣

∣

∣

∣
X i,N

t + X̄ i
t

∣

∣

∣
+ β

∣

∣

∣
X i,N

t − X̄ i
t

∣

∣

∣
+

1

2

∣

∣

∣
Ci,N

t − C̄i
t

∣

∣

∣

∣

∣

∣
Ci,N

t + C̄i
t

∣

∣

∣

+ α
∣

∣

∣C
i,N
t − C̄i

t

∣

∣

∣ .

Now, by Lemma 2.1 (i), we have H(z) ≥ γ
4x

2 + 1
4c

2 and since
∣

∣

∣X
i,N
t − X̄ i

t

∣

∣

∣ ≤ rit and
∣

∣

∣C
i,N
t − C̄i

t

∣

∣

∣ ≤ rit/δ, we get

∣

∣

∣
X i,N

t − X̄ i
t

∣

∣

∣

(

1

2
γ
∣

∣

∣
X i,N

t + X̄ i
t

∣

∣

∣
+ β

)

≤ rit

(√
γ

(
√

H(Zi,N
t ) +

√

H(Z̄i
t)

)

+ β

)

and
∣

∣

∣C
i,N
t − C̄i

t

∣

∣

∣

(

1

2

∣

∣

∣C
i,N
t + C̄i

t

∣

∣

∣+ α

)

≤ rit
δ

(
√

H(Zi,N
t ) +

√

H(Z̄i
t) + α

)

.

Thus
∣

∣

∣H(Zi,N
t )−H(Z̄i

t)
∣

∣

∣ ≤
(

β +
α

δ

)

rit +

(√
γ +

1

δ

)

rit

(
√

H(Zi,N
t ) +

√

H(Z̄i
t)

)

.

Finally,

|∂XH̃(Zi,N
t )− ∂XH̃(Z̄i

t)|

≤γrit
(

exp

(

a

√

H(Zi,N
t )

)

+ exp

(

a
√

H(Z̄i
t)

))

+ a
√

2max (γ, 1)
(

β +
α

δ

)

rit

(

exp

(

a

√

H(Zi,N
t )

)

+ exp

(

a
√

H(Z̄i
t)

))

+ a
√

2max (γ, 1)

(√
γ +

1

δ

)

rit

(
√

H(Zi,N
t ) +

√

H(Z̄i
t)

)

×
(

exp

(

a

√

H(Zi,N
t )

)

+ exp

(

a
√

H(Z̄i
t)

))

≤rit
(

γ + a
√

2max (γ, 1)
(

β +
α

δ

))

(

exp

(

a

√

H(Zi,N
t )

)

+ exp

(

a
√

H(Z̄i
t)

))

+ arit
√

2max (γ, 1)

(√
γ +

1

δ

)

×
(

2

√

H(Zi,N
t ) exp

(

a

√

H(Zi,N
t )

)

+ 2
√

H(Z̄i
t) exp

(

a
√

H(Z̄i
t)

))

.
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Now, we can finally use Lemma 2.5, and more precisely (2.9) and (2.10), we obtain

|∂XH̃(Zi,N
t )− ∂XH̃(Z̄i

t)|

≤rit
(

γ + a
√

2max (γ, 1)
(

β +
α

δ

))

(

H̃(Zi,N
t ) + H̃(Z̄i

t) +
4

a2

(

ea
2/2 −1

)

)

+ arit
√

2max (γ, 1)

(√
γ +

1

δ

)(

2aH̃(Zi,N
t ) +

2

a
(e−2) + 2aH̃(Z̄i

t) +
2

a
(e−2)

)

≤rit
(

H̃(Zi,N
t ) + H̃(Z̄i

t)
)

[

γ + a
√

2max (γ, 1)
(

β +
α

δ

)

+ 2a2
√

2max (γ, 1)

(√
γ +

1

δ

)]

+ rit

[

(

γ + a
√

2max (γ, 1)
(

β +
α

δ

)) 4

a2

(

ea
2/2 −1

)

+ 4
√

2max (γ, 1)

(√
γ +

1

δ

)

(e−2)

]

.

We denote by Cf,1 and Cf,2 (given in Lemma 2.6) the following constants

Cf,1 = 4

[

(

γ + a
√

2max (γ, 1)
(

β +
α

δ

)) 4

a2

(

ea
2/2 −1

)

+ 4
√

2max (γ, 1)

(√
γ +

1

δ

)

(e−2)

]

Cf,2 = 4

[

γ + a
√

2max (γ, 1)
(

β +
α

δ

)

+ 2a2
√

2max (γ, 1)

(√
γ +

1

δ

)]

By the definition of Gi
t and since Gi

t ≥ 1, we obtain

|∂XH̃(Zi,N
t )− ∂XH̃(Z̄i

t)| ≤ rit
Gi

t

ǫ

Cf,2
4

+ ritG
i
t

Cf,1
4
,

and eventually

2ǫ

(

1 +
1

N

)

σ2
Xϕrc

(

|X i,N
t − X̄ i

t |
)2 ∣
∣

∣∂XH̃(Zi,N
t )− ∂XH̃(Z̄i

t)
∣

∣

∣

≤ (ǫCf,1 + Cf,2)σ2
Xϕrc

(

|X i,N
t − X̄ i

t |
)2

ritG
i
t.

B Proof of Theorem 1.4 in the case σX = 0 and σC > 0

We quickly explain in this section how we may also deal with the case σX = 0 and
σC > 0. Recall how the choice of the coupling method was motivated by the observation

in (1.9) that the difference of potentials
∣

∣

∣C
i,N
t − C̄i

t

∣

∣

∣ was naturally contracting when
∣

∣

∣X
i,N
t − X̄ i

t

∣

∣

∣ was close to 0. This lead us to use a reflection coupling on the Brownian

motions acting on the potential X , to bring the difference close to 0, and it was thus
necessary for σX to be positive (σC however did not matter). In the case σX = 0, we
then have to assume σC > 0, and we do a change of variable, motivated by the following
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observation. We have, when σX = 0

d(X i,N
t − X̄ i

t) =
(

(X i,N
t − X̄ i

t)− ((X i,N
t )

3 − (X̄ i
t)

3
)− (Ci,N

t − C̄i
t)
)

dt

+





1

N

N
∑

j=1

KX(Zi,N
t − Zj,N

t )−KX ∗ ρ̄(Z̄i
t)



 dt

=
(

2(X i,N
t − X̄ i

t)− (Ci,N
t − C̄i

t)− (X i,N
t − X̄ i

t)− ((X i,N
t )

3 − (X̄ i
t)

3
)
)

dt

+





1

N

N
∑

j=1

KX(Zi,N
t − Zj,N

t )−KX ∗ ρ̄(Z̄i
t)



 dt.

Thus

d|X i,N
t − X̄ i

t | =sign(X i,N
t − X̄ i

t)
(

2(X i,N
t − X̄ i

t)− (Ci,N
t − C̄i

t)
)

dt

−
(

|(X i,N
t )

3 − (X̄ i
t)

3| − |X i,N
t − X̄ i

t |
)

dt

+ sign(X i,N
t − X̄ i

t)





1

N

N
∑

j=1

KX(Zi,N
t − Zj,N

t )−KX ∗ ρ̄(Z̄i
t)



 dt.

The quantity |X i,N
t − X̄ i

t | is therefore naturally contracting when |2(X i,N
t − X̄ i

t)− (Ci,N
t −

C̄i
t)| is close to 0. Thanks to the presence of a Brownian motion in the stochastic differ-

ential equations defining the potential C, we can now use a reflection coupling to have
|2(X i,N

t − X̄ i
t)− (Ci,N

t − C̄i
t)| go to 0. Consider the following coupling































dX i,N
t = (X i,N

t − (X i,N
t )

3 − Ci,N
t − α)dt +

1

N

∑N
j=1KX(Zi,N

t − Zj,N
t )dt

dCi,N
t = (γX i,N

t − Ci,N
t + β)dt+

1

N

∑N
j=1KC(Z

i,N
t − Zj,N

t )dt

+σCϕsc

(

|2(X i,N
t − X̄ i

t)− (Ci,N
t − C̄i

t)|
)

dBi,sc,C
t

+σCϕrc

(

|2(X i,N
t − X̄ i

t)− (Ci,N
t − C̄i

t)|
)

dBi,rc,C
t ,

(B.1)

and






























dX̄ i
t = (X̄ i

t − (X̄ i
t)

3 − C̄i
t − α)dt +KX ∗ ρ̄(Z̄i

t)dt

dC̄i
t = (γX̄ i

t − C̄i
t + β)dt+KC ∗ ρ̄(Z̄i

t)dt

+σCϕsc

(

|2(X i,N
t − X̄ i

t)− (Ci,N
t − C̄i

t)|
)

dBi,sc,C
t

−σCϕrc

(

|2(X i,N
t − X̄ i

t)− (Ci,N
t − C̄i

t)|
)

dBi,rc,C
t

ρ̄ = L((X̄1
t , C̄

1
t )),

(B.2)

and for δ > 0, the following modified distance

rit = δ|X i,N
t − X̄ i

t |+ |2(X i,N
t − X̄ i

t)− (Ci,N
t − C̄i

t)|.

Like previously, we consider a modified semi-metric of the form 1
N

∑

f(rit)G
i
t and similar

calculations yield

d(ectf(rit)G
i
t) ≤ ectKi

tdt+ dM i
t ,

whereM i
t is a continuous local martingale and

Ki
t = K̃i

t + I1,it + I2,it + I3,it .
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We define K̃i
t , I

1,i
t , I2,it and I3,it as follows

K̃i
t =G

i
t

[

2cf(rit) + 2f ′′(rit)σ
2
Cϕrc

(

|2(X i,N
t − X̄ i

t)− (Ci,N
t − C̄i

t)|
)2

+f ′(rit)
(∣

∣

∣2(X
i,N
t − X̄ i

t)− (Ci,N
t − C̄i

t)
∣

∣

∣ (δ + 1)− |(X i,N
t )

3 − (X̄ i
t)

3|(δ − 2)

+|X i,N
t − X̄ i

t | (−δ + γ + LX(δ + 2) + LC) + |Ci,N
t − C̄i

t |(LX(δ + 2) + LC)

+σ2
Cϕrc

(

|2(X i,N
t − X̄ i

t)− (Ci,N
t − C̄i

t)|
)2

(ǫCf,1 + Cf,2) rit
)]

+ ǫf(rit)



4B̃ − λ

8
H̃(Z̄i

t)−
λ

8
H̃(Zi,N

t )− λ

8N

N
∑

j=1

H̃(Z̄j
t )−

λ

32N

N
∑

j=1

H̃(Zj,N
t )



 ,

I1,it =Gi
tf

′(rit)



(δ + 2)





∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KX(Z̄i
t − Z̄j

t )−KX ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣





+





∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

KC(Z̄
i
t − Z̄j

t )−KC ∗ µ̄t(Z̄
i
t)

∣

∣

∣

∣

∣

∣







 ,

I2,it =Gi
tf

′(rit)



(δ + 2)





LX

N





N
∑

j=1

|Xj,N
t − X̄j

t |+ |Cj,N
t − C̄j

t |









+





LC

N





N
∑

j=1

|Xj,N
t − X̄j

t |+ |Cj,N
t − C̄j

t |













− cf(rit)G
i
t − ǫf(rit)

[

λ

32
H(Z̄i

t) exp

(

a
√

H(Z̄i
t)

)

+
λ

32
H(Zi,N

t ) exp

(

a

√

H(Zi,N
t )

)]

− ǫf(rit)





λ

32N

N
∑

j=1

H(Z̄j
t ) exp

(

a

√

H(Z̄j
t )

)

+
λ

32N

N
∑

j=1

H(Zj,N
t ) exp

(

a

√

H(Zj,N
t )

)



 ,

I3,it =ǫf(rit)



(αXLX + βXLC)

(

∑N
j=1 |X

j,N
t |

N

)2

exp

(

a

√

H(Zi,N
t )

)

+(αCLX + βCLC)

(

∑N
j=1 |C

j,N
t |

N

)2

exp

(

a

√

H(Zi,N
t )

)

− λ

16
H(Zi,N

t ) exp

(

a

√

H(Zi,N
t )

)

− λ

16N

N
∑

j=1

H(Zj,N
t ) exp

(

a

√

H(Zj,N
t )

)



 .

We then have the additional constraint of δ > 2 (so that the coefficient appearing in

front of |(X i,N
t )

3 − (X̄ i
t)

3| in the expression of K̃i
t is non-positive). Otherwise, we deal

with the various terms exactly as previously, through the choice of a sufficiently concave
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function f and a law of large numbers, and by considering the regions of space

Regi
1 =

{

(Z̄i
t , Z

i,N
t ) s.t. |2(X i,N

t − X̄ i
t)− (Ci,N

t − C̄i
t)| ≥ ξ and rit ≤ R

}

,

Regi
2 =

{

(Z̄i
t , Z

i,N
t ) s.t. |2(X i,N

t − X̄ i
t)− (Ci,N

t − C̄i
t)| < ξ and rit ≤ R1

}

,

Regi
3 =

{

(Z̄i
t , Z

i,N
t ) s.t. rit > R

}

.

Index

Throughout this article, we define many parameters and constants. For the sake of
clarity, we list the main ones here so as to give the reader an index to refer to.

• X,C,Z: X and C are the processes we consider (see (1.1) and (1.2)) and we
often refer to Z = (X,C),

• µ̄t = Law(Z̄t): the density of the non-linear limit (see (1.2)),

• α, β, γ, σX, σC: parameters of the problem (see (1.1)),

• KX,KC,LX,LC,LX,max,LC,max: KX (resp. KC) is a Lipschitz continuous inter-
action kernel, with Lipschitz constant LX ∈ [0, LX,max] (resp. LC ∈ [0, LC,max]), as
given in Assumption 1.1. In the case of uniform in time propagation of chaos, the
inequalities LX and LC must satisfy are listed in Subsection 2.4,

• Wp: the usual Wasserstein distance associated to the Lp distance (see (1.3)),

• a, ã, Cinit,exp: constants used to give an exponential initial moment to the prob-
lem (see the assumptions of Theorem 1.4 and Section 2.3),

• λ,B, B̃,H, H̃, αX, αC, βX, βC: H (resp. H̃) is a Lyapunov functions given in (2.1)
(resp. (2.8)). Its main property involves parameters λ and B (resp. λ and B̃), as
can for instance be seen in (2.3) (resp. (2.14)). αX , αC , βX and βC are intermediate
constants given in Lemma 2.2,

• c: a contraction rate (see Subsection 2.4),

• r, f ,g, φ,Φ,G, ρ, δ,R, ǫ, Cf ,1, Cf ,2: f (see (2.20)) is a concave function, the defi-
nition of which involves g, φ, Φ (see Subsection 2.4). Function G (see (2.26)) is
then used to define ρ (see (2.25)), the semi-metric we consider in the end. All
these notations thus refer to the modified distance we consider. These functions
will be applied to a modification r of the usual L1 distance (see equation (2.24)).
Then, parameters δ, R, ǫ, Cf,1, and Cf,2 are used to define such functions (see
Subsection 2.4 for some explicit values),

• R0, φmin: intermediate constants (see Subsection 2.4),

• Cinit,2: uniform in time bound on the second moment of the processes (see
Lemma 2.4),

• C1, C2, Cz: constants used to quantify the control our modified distance has over
the usual L1 and L2 distance (see Lemma 2.7 for the control and Subsection 2.4
for explicit values),

• φrc, φsc, ξ: φrc and φsc are two Lipschitz continuous functions used to define the
coupling method, and their definitions involve a parameter ξ which converges to
0 in the end (see the beginning of Section 3),

• Cr,H: used to explicit the control of the Lyapunov function H over the distance
r (see Lemma 2.1),
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empirical and randomized structural brain networks, Differential Equations and Dynamical
Systems 29 (2021), no. 4, 789–805, doi.

[3] Nils Berglund and Damien Landon,Mixed-mode oscillations and interspike interval statistics
in the stochastic FitzHugh-Nagumo model, Nonlinearity 25 (2012), no. 8, 2303–2335, doi.
MR-2946187

[4] François Bolley, Arnaud Guillin, and Florent Malrieu, Trend to equilibrium and particle ap-
proximation for a weakly selfconsistent Vlasov-Fokker-Planck equation, M2AN. Mathemati-
cal Modelling and Numerical Analysis 44 (2010), no. 5, 867–884, doi. MR-2731396

[5] Mireille Bossy, Olivier Faugeras, and Denis Talay, Clarification and complement to “Mean-
field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-
Nagumo neurons”, Journal of Mathematical Neuroscience 5 (2015), Art. 19, 23, doi.
MR-3392551

[6] Mireille Bossy, Joaquín Fontbona, and Héctor Olivero, Synchronization of stochastic mean
field networks of Hodgkin-Huxley neurons with noisy channels, Journal of Mathematical
Biology 78 (2019), no. 6, 1771–1820, doi. MR-3968981

[7] Gonçalo dos Reis, William Salkeld, and Julian Tugaut, Freidlin-Wentzell LDP in path space
for McKean-Vlasov equations and the functional iterated logarithm law, The Annals of Ap-
plied Probability 29 (2019), no. 3, 1487–1540, doi. MR-3914550

[8] Alain Durmus, Andreas Eberle, Arnaud Guillin, and Raphael Zimmer, An elementary ap-
proach to uniform in time propagation of chaos, Proceedings of the American Mathematical
Society 148 (2020), no. 12, 5387–5398, doi. MR-4163850

[9] Andreas Eberle, Reflection couplings and contraction rates for diffusions, Probability Theory
and Related Fields 166 (2016), no. 3-4, 851–886, doi. MR-3568041

[10] Arnaud Guillin, Pierre Le Bris, and Pierre Monmarché, Convergence rates for the Vlasov-
Fokker-Planck equation and uniform in time propagation of chaos in non convex cases, Elec-
tronic Journal of Probability 27 (2022), Paper No. 124, 44, doi. MR-4489825

[11] Alan L. Hodgkin and Andrew F. Huxley, A quantitative description of membrane current and
its application to conduction and excitation in nerve, The Journal of Physiology 117 (1952),
no. 4, 500–544, doi.

[12] Nobuyuki Ikeda and Shinzo Watanabe, Stochastic differential equations and diffusion pro-
cesses, second ed., North-Holland Mathematical Library, vol. 24, North-Holland Publishing
Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. MR-1011252

[13] Mark Kac, Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on
Mathematical Statistics and Probability, 1954–1955, Vol. III, University of California Press,
Berkeley-Los Angeles, Calif., 1956, pp. 171–197. MR-0084985

[14] Chaman Kumar, Neelima, Christoph Reisinger, and Wolfgang Stockinger, Well-posedness
and tamed schemes for McKean-Vlasov equations with common noise, The Annals of Applied
Probability 32 (2022), no. 5, 3283–3330, doi. MR-4497846

[15] José R. León and Adeline Samson, Hypoelliptic stochastic FitzHugh-Nagumo neuronal
model: Mixing, up-crossing and estimation of the spike rate, The Annals of Applied Prob-
ability 28 (2018), no. 4, 2243–2274, doi. MR-3843828

[16] Fuzhi Li, Dynamics for stochastic Fitzhugh-Nagumo systems with general multiplicative
noise on thin domains, Mathematical Methods in the Applied Sciences 44 (2021), no. 6,
5050–5078, doi. MR-4235550

[17] Fuzhi Li and Dongmei Xu, Regular dynamics for stochastic Fitzhugh-Nagumo systems with
additive noise on thin domains, Discrete and Continuous Dynamical Systems. Series B. A
Journal Bridging Mathematics and Sciences 26 (2021), no. 7, 3517–3542, doi. MR-4251845

MNA 3 (2023), paper 3.
Page 49/50

https://mna.episciences.org/

http://dx.doi.org/10.1186/2190-8567-2-10
https://mathscinet.ams.org/mathscinet-getitem?mr=2974499
http://dx.doi.org/10.1007/s12591-017-0354-x
http://dx.doi.org/10.1088/0951-7715/25/8/2303
https://mathscinet.ams.org/mathscinet-getitem?mr=2946187
http://dx.doi.org/10.1051/m2an/2010045
https://mathscinet.ams.org/mathscinet-getitem?mr=2731396
http://dx.doi.org/10.1186/s13408-015-0031-8
https://mathscinet.ams.org/mathscinet-getitem?mr=3392551
http://dx.doi.org/10.1007/s00285-019-01326-7
https://mathscinet.ams.org/mathscinet-getitem?mr=3968981
http://dx.doi.org/10.1214/18-AAP1416
https://mathscinet.ams.org/mathscinet-getitem?mr=3914550
http://dx.doi.org/10.1090/proc/14612
https://mathscinet.ams.org/mathscinet-getitem?mr=4163850
http://dx.doi.org/10.1007/s00440-015-0673-1
https://mathscinet.ams.org/mathscinet-getitem?mr=3568041
http://dx.doi.org/10.1214/22-ejp853
https://mathscinet.ams.org/mathscinet-getitem?mr=4489825
http://dx.doi.org/10.1113/jphysiol.1952.sp004764
https://mathscinet.ams.org/mathscinet-getitem?mr=1011252
https://mathscinet.ams.org/mathscinet-getitem?mr=0084985
http://dx.doi.org/10.1214/21-aap1760
https://mathscinet.ams.org/mathscinet-getitem?mr=4497846
http://dx.doi.org/10.1214/17-AAP1355
https://mathscinet.ams.org/mathscinet-getitem?mr=3843828
http://dx.doi.org/10.1002/mma.7092
https://mathscinet.ams.org/mathscinet-getitem?mr=4235550
http://dx.doi.org/10.3934/dcdsb.2020244
https://mathscinet.ams.org/mathscinet-getitem?mr=4251845
https://doi.org/10.46298/mna.9748
https://mna.episciences.org/


Propagation of chaos in mean field networks of FHN neurons

[18] Yangrong Li and Fuzhi Li, Limiting dynamics for stochastic FitzHugh-Nagumo equations on
large domains, Stochastics and Dynamics 19 (2019), no. 5, 1950037, 25, doi. MR-3994161

[19] Torgny Lindvall and L. Chris G. Rogers, Coupling of multidimensional diffusions by reflec-
tion, The Annals of Probability 14 (1986), no. 3, 860–872. MR-841588

[20] Eric Luçon and Christophe Poquet, Periodicity induced by noise and interaction in the ki-
netic mean-field FitzHugh-Nagumo model, The Annals of Applied Probability 31 (2021),
no. 2, 561–593, doi. MR-4254489

[21] Eric Luçon and Wilhelm Stannat, Mean field limit for disordered diffusions with singular in-
teractions, The Annals of Applied Probability 24 (2014), no. 5, 1946–1993, doi. MR-3226169

[22] Yan Lv and Wei Wang, Limit dynamics for the stochastic FitzHugh-Nagumo system, Nonlin-
ear Analysis. Real World Applications. An International Multidisciplinary Journal 11 (2010),
no. 4, 3091–3105, doi. MR-2661971

[23] Sima Mehri, Michael Scheutzow, Wilhelm Stannat, and Bian Z. Zangeneh, Propagation of
chaos for stochastic spatially structured neuronal networks with delay driven by jump diffu-
sions, The Annals of Applied Probability 30 (2020), no. 1, 175–207, doi. MR-4068309

[24] Stéphane Mischler, Cristóbal Quiñinao, and Jonathan Touboul, On a kinetic Fitzhugh-
Nagumo model of neuronal network, Communications in Mathematical Physics 342 (2016),
no. 3, 1001–1042, doi. MR-3465438

[25] Christoph Reisinger and Wolfgang Stockinger, An adaptive Euler-Maruyama scheme for
McKean-Vlasov SDEs with super-linear growth and application to the mean-field FitzHugh-
Nagumo model, Journal of Computational and Applied Mathematics 400 (2022), Paper No.
113725, 23, doi. MR-4293705

[26] Daniel Revuz and Marc Yor, Continuous martingales and Brownian motion, third ed.,
Grundlehren Der Mathematischen Wissenschaften [Fundamental Principles of Mathemati-
cal Sciences], vol. 293, Springer-Verlag, Berlin, 1999, doi. MR-1725357

[27] Katharina Schuh, Global contractivity for Langevin dynamics with distribution-dependent
forces and uniform in time propagation of chaos, 2022, arXiv:2206.03082, doi.

[28] Alain-Sol Sznitman, Topics in propagation of chaos, École d’Été de Probabilités de Saint-
Flour XIX—1989, Lecture Notes in Math., vol. 1464, Springer, Berlin, 1991, pp. 165–251,
doi. MR-1108185

[29] D. Tatchim Bemmo, Martin Siewe Siewe, and Clément Tchawoua, Combined effects of cor-
related bounded noises and weak periodic signal input in the modified FitzHugh-Nagumo
neural model, Communications in Nonlinear Science and Numerical Simulation 18 (2013),
no. 5, 1275–1287, doi. MR-2998587

[30] Michèle Thieullen, Deterministic and stochastic FitzHugh-Nagumo systems, Stochastic
Biomathematical Models, Lecture Notes in Math., vol. 2058, Springer, Heidelberg, 2013,
pp. 175–186, doi. MR-3051033

[31] Henry C. Tuckwell, Roger Rodriguez, and Frederic Y. M. Wan, Determination of firing times
for the stochastic FitzHugh-Nagumo neuronal model, Neural Computation 15 (2003), no. 1,
143–159, doi.

[32] Kenneth Uda, Ergodicity and spike rate for stochastic FitzHugh-Nagumo neural model with
periodic forcing, Chaos, Solitons & Fractals 123 (2019), 383–399, doi. MR-3942215

Acknowledgments. During this study, Laetitia Colombani was a PhD student under
the supervision of Patrick Cattiaux and Manon Costa, and Pierre Le Bris a PhD student
under the supervision of Arnaud Guillin and Pierre Monmarché. The authors would like
to thank them, as well as Samir Salem, for their help throughout the redaction of the
present article. This work has been (partially) supported by the Project EFI ANR-17-
CE40-0030 of the French National Research Agency.

MNA 3 (2023), paper 3.
Page 50/50

https://mna.episciences.org/

http://dx.doi.org/10.1142/S0219493719500370
https://mathscinet.ams.org/mathscinet-getitem?mr=3994161
https://mathscinet.ams.org/mathscinet-getitem?mr=841588
http://dx.doi.org/10.1214/20-aap1598
https://mathscinet.ams.org/mathscinet-getitem?mr=4254489
http://dx.doi.org/10.1214/13-AAP968
https://mathscinet.ams.org/mathscinet-getitem?mr=3226169
http://dx.doi.org/10.1016/j.nonrwa.2009.11.004
https://mathscinet.ams.org/mathscinet-getitem?mr=2661971
http://dx.doi.org/10.1214/19-AAP1499
https://mathscinet.ams.org/mathscinet-getitem?mr=4068309
http://dx.doi.org/10.1007/s00220-015-2556-9
https://mathscinet.ams.org/mathscinet-getitem?mr=3465438
http://dx.doi.org/10.1016/j.cam.2021.113725
https://mathscinet.ams.org/mathscinet-getitem?mr=4293705
http://dx.doi.org/10.1007/978-3-662-06400-9
https://mathscinet.ams.org/mathscinet-getitem?mr=1725357
http://dx.doi.org/10.48550/ARXIV.2206.03082
http://dx.doi.org/10.1007/BFb0085169
https://mathscinet.ams.org/mathscinet-getitem?mr=1108185
http://dx.doi.org/10.1016/j.cnsns.2012.09.016
https://mathscinet.ams.org/mathscinet-getitem?mr=2998587
http://dx.doi.org/10.1007/978-3-642-32157-3_7
https://mathscinet.ams.org/mathscinet-getitem?mr=3051033
http://dx.doi.org/10.1162/089976603321043739
http://dx.doi.org/10.1016/j.chaos.2019.04.014
https://mathscinet.ams.org/mathscinet-getitem?mr=3942215
https://doi.org/10.46298/mna.9748
https://mna.episciences.org/

	Introduction
	Understanding the model
	Framework and results
	Existence of solutions
	Quick result: non uniform in time propagation of chaos

	Preliminaries
	Notation
	First Lyapunov function
	Modification of the function
	Parameters
	Control of the usual distances

	Proof of Theorem 1.4 in the case X>0
	Main proof and results
	Proof of the decomposition
	Controls of I1,it, I2,it and I3,it
	Contraction in various regions of space
	Region 1:  |Xi,Nt-it| and ritR.
	Region 2: |Xi,Nt-it|< and ritR.
	Region 3: ritR.


	Various technical lemmas
	On Itô's formula for the L1 norm
	On Lemma 2.1
	Proof of Lyapunov's property of H and its consequences
	Proof of Lemma 2.6
	Proof of Lemma 2.7
	Proof of Lemmas 3.2 and 3.7

	Proof of Theorem 1.4 in the case X=0 and C>0
	References

