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Abstract

After reviewing the behavioral studies of working memory and of the cellular substrate
of the latter, we argue that metastable states constitute candidates for the type of
transient information storage required by working memory. We then present a simple
neural network model made of stochastic units whose synapses exhibit short-term
facilitation. The Markov process dynamics of this model was specifically designed
to be analytically tractable, simple to simulate numerically and to exhibit a quasi-
stationary distribution (QSD). Since the state space is finite this QSD is also a Yaglom
limit, which allows us to bridge the gap between quasi-stationarity and metastability
by considering the relative orders of magnitude of the relaxation and absorption
times. We present first analytical results: characterization of the absorbing region
of the Markov process, irreducibility outside this absorbing region and consequently
existence and uniqueness of a QSD. We then apply Perron-Frobenius spectral analysis
to obtain any specific QSD, and design an approximate method for the first moments of
this QSD when the exact method is intractable. Finally we use these methods to study
the relaxation time toward the QSD and establish numerically the memorylessness of
the time of extinction.
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1 Introduction

1.1 The neurobiological horizon

As described by Fuster in the introduction of his 1973 article [18]: A delayed-response
trial typically consists of the presentation of one of two possible visual cues, an ensuing
period of enforced delay and, at the end of it, a choice of motor response in accord
with the cue. The temporal separation between cue and response is the principal
element making the delayed response procedure a test of an operationally defined
short-term memory function. In that article Fuster described, in the monkey prefrontal
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QSD and metastability in Networks with Synaptic Plasticity

cortex, neurons that switch between no activity and a sustained activity at constant rate
during the delay period when the animal had to perform a delayed-response task. He
showed moreover—using distracting stimuli that interrupted the sustained activity of
these neurons—that the monkey errors at the end of the delay period were positively
correlated with the interruption of sustained activity. Since then, many experimental
investigations reviewed in [19, Chap. VII] and [11] have confirmed this basic finding and
showed that some of the “sustained activity neurons” are insensitive to the type of cue
(color, shape, location, sound) and seem to encode the “abstract” notion of remembering
“any” cue until the expiration of a delay, while others, especially outside the prefrontal
cortex, are sensitive to the type of cue. These “sustained activity neurons” are relatively
easy to record from, implying that they are fairly abundant [28]. This sustained activity
has been intriguing modelers for a long time, leading them to explore first network
models with subgroups of strongly reciprocally coupled excitatory neurons [44, 1]. The
sustained activity has then been interpreted as a local attractor of some dynamical
system (reviewed in [41]). Stability issues when the transiently memorized item is a
continuous quantity—like an angle—, led modelers to include some “slow” and “use
dependent” coupling, initially in the form of NMDA receptors [10, 41]—for a review
of basic neurophysiology, see [30]. But [42] described a subclass of pyramidal (and
therefore excitatory) cells in the prefrontal cortex that are strongly interconnected
and whose synapses are unusual, since they exhibit a marked short-term facilitation–
synapses between neurons of this type usually exhibit short-term depression. This has
lead to several studies giving a more or less central role to short-term facilitation in
sustained activity generation or stabilization, e.g. [4, 24, 21]—or even proposing a
working memory mechanism without sustained activity [34]—, reviewed in [5]. But the
secondary status of the “noise” in these studies, where variability comes into play mostly
at the neurons input level, is at odd with basic empirical observations. It is indeed well
known [13, 43, 30] that neurons depend on ion channels that are randomly going back
and forth between closed and opened states both for the action potential generation [40]
and the synaptic transmission [25]; that (chemical) synaptic transmission involves the
release of a variable number of transmitter packets / quanta [16, 14], giving rise to the
rather noisy membrane voltage trajectories that are actually observed.

These considerations strongly suggest an alternative model construction strategy:
working with stochastic units / neurons instead of deterministic ones. Continuing
and simplifying [20], we therefore developed a minimal model of the sub-network of
reciprocally coupled pyramidal cells with facilitating synapses [42]; a model that is
both amenable to analytical solutions and that can be easily simulated. This model is
made of stochastic neurons that accumulate their inputs until a threshold is reached.
The synapses exhibit short-term facilitation, represented by a binary random variable,
enabling the sub-network to exhibit a transient memoryless sustained activit—that
is, to reach a quasi-stationary distribution (QSD) leading to genuine metastability—,
reminiscent of what is observed in working memory experiments.

As pointed out by one of the anonymous referees, models that explain this kind
of persistent activity by introducing a stochastic binary facilitation state have already
been considered in the literature. One of the main references is [35], in which the
persistent activity is quantified via mean-field theory. Nonetheless, both our model and
the analytic approach we develop are quite different from what was proposed in the
latter. Indeed, while the facilitation state is the only stochastic element in [35]—the
spikes being produced in a deterministic fashion—in the model we propose the spike
generation itself is inherently stochastic. More importantly, our analysis doesn’t require
mean-field approximation: QSD theory allows an exact characterization of the metastable
phase at the mesoscopic scale, which is our main contribution. We nonetheless also
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propose a mean-field analysis of our system in a second time, since the QSD approach is
currently intractable at the macroscopic scale.

It shall be noticed that the model we propose does not include any leak currents, as
it is common in biological neural networks models. This is done on purpose, since the
metastable properties of leaky stochastic models has already been investigated in several
articles (see [2, 3, 37, 31, 27]), and one of our intentions is to show that leakage is not
the only possible biophysical mechanism by which metastability might be implemented
in the brain.

1.2 Metastability and Quasi-stationarity

The expressions “metastability" and “quasi-stationary distribution" used in the previ-
ous section have proper mathematical meanings, which deserve explanations. The notion
of metastability on one hand has a long history, and appears in a wide variety of fields to
describe various apparently unrelated phenomena, from nuclear physics to the study of
avalanches and super-cooling water. More recently it has gained popularity in the field of
neuroscience, as in many respects the brain seems to exhibit metastable-like behaviors.
In the present article the notion of metastability is to be understood as in the rigorous
characterization introduced in [8] for interacting particle systems, which requires that,
for a Markov process evolving in a space which includes an absorbing state: (i) the
time to reach the absorbing state from any other state is memoryless (i.e. follows an
exponential distribution), asymptotically with respect to the number of particles in the
system; (ii) before reaching this absorbing state (the only real equilibrium), the system
exhibits thermalization, i.e. an apparent stabilization, temporary but long, in a region
of the state space away from the actual equilibrium. The notion of quasi-stationary
distribution on the other hand refers to the stationary distribution of a modified Markov
process which has been conditioned to stay away from its absorbing state (see [23, 33]
for an introduction). Since here we consider a system which is essentially irreducible
and evolves in a finite state space, the QSD is unique and corresponds to the Yaglom
limit, that is, the unique limit distribution to which the system conditioned on non-
absorption relaxes, starting from any given state of the irreducibility region. Moreover
it is well-known that, in this case, if the initial state is distributed with respect to the
QSD then the time of extinction is indeed memoryless. In the following we argue that
the thermalization referred to above (that is, the metastable phase) can be understood
through the theory of quasi-stationarity—a possibility which, quite surprisingly, seems
to have been mostly ignored in the literature, with the notable exceptions of [6] and
[22], in specific settings which are not applicable in our case. This approach gives us
analytical tools to quantitatively characterize the metastable phase, as well as a quite
straightforward (but not yet rigorous) way of establishing the memorylessness evoked in
point (i).

1.3 Overview

The present paper is organized as follows. In Section 2 we give the basic definition of
our model: first from the modeling viewpoint; then in a somewhat more mathematical
form, as a continuous-time Markov chain. In Section 3 we partition the state space into
relevant sub-regions; in particular we give an explicit characterization of the absorbing
region, and of the support of the (yet to be proven) metastable phase; irreducibility is
also established. In Section 4, we introduce briefly the relevant elements of the theory
of quasi-stationarity distributions; the key role of the Perron-Frobenius spectral analysis
is emphasized. In Section 5, these ideas are implemented for a simple example with
5 neurons, which allows us to compare numerically the relative orders of magnitude
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of the relaxation toward the QSD and then toward the absorbing region, establishing
the memorylessness of the time of extinction. Since this exact method becomes rapidly
intractable, we then study numerically the extinction time in Section 6. An heuristic cal-
culation that provides an approximate alternative to the spectral approach is presented
in Section 7.

2 Model definition

We start by defining informally a stochastic system of interacting spiking neurons—a
formal definition will be given in the next section. The system consists in a finite set
of N neurons. A membrane potential process, denoted (Ut(i))t≥0, taking values in the
set of non-negative integers is associated to every neuron i ∈ {1, . . . N}. The spiking
activity of the neurons depends on a threshold value θ ∈ Z+. When Ut(i) < θ neuron i

cannot spike, and we say that it is quiescent, while when Ut(i) ≥ θ we say that neuron i

is active: it spikes at rate β—i.e. it waits a time ∆t distributed as an exponential random
variable of parameter β and spikes at time t+∆t. Every neuron is connected to every
other neuron of the network with a uniform synaptic strength and the effect of a spike
depends on the state of the synapse between the spiking neuron and the other neurons
of the network at that time. At any time the synapse can be either facilitated or not
facilitated, meaning that if a spike occurs, it will or will not be "transmitted" to the other
neurons. The facilitation state of the synapse of neuron i is denoted (Ft(i))t≥0; it is a
stochastic process taking value in {0, 1}. Whenever Ft(i) = 1 we say that the synapse of
neuron i is facilitated at time t. The facilitated synapse loses its facilitation (i.e. goes
back to the unfacilitated state Ft+∆t

(i) = 0) at a given rate λ. Now the fact that a given
neuron j spikes at time t means the following: (i) its membrane potential is reset to 0,
Ut+(j) = 0; (ii) its synapse becomes facilitated if it was not already, Ft+(j) = 1; (iii) if
its synapse was facilitated at the time of the spike, the spike is said to be efficient and
the membrane potential process of all the other neurons in the system increases by one
unit, while nothing happens to these neurons if the synapse was not facilitated at the
moment of the spike, Ut+(i) = Ut−(i) + Ft−(j), for all i ̸= j; in the latter case the spike
is said to be inefficient. All exponential random variables involved are assumed to be
independent. Then a trajectory of the system is entirely characterized by the family of
interacting stochastic processes (Ut(i), Ft(i))t≥0 (for i ∈ {1, . . . N}).

2.1 Formal definition as a continuous-time Markov chain

It is clear that although the membrane potential of any neuron i can get arbitrarily
large in the above model formulation, from the dynamics viewpoint all that matters is
to know whether Ut(i) < θ or not. We can therefore consider that there are only θ + 1

relevant membrane potential states: Ut(i) = 0, Ut(i) = 1, . . ., Ut(i) = θ − 1 and Ut(i) ≥ θ.
The effective state space of a neuron if therefore finite with 2(θ + 1) elements:

Φ ≡ {0, . . . , θ} × {0, 1} ,

where the set {0, 1} corresponds to the synaptic facilitation. Figure 1 illustrates the
effective states accessible to an arbitrary neuron i ∈ {1, . . . , N} of the network as well
as the possible transitions among those states. The state of any neuron of the network
can therefore be fully specified by placing a token on one of the spaces (circles/squares,
by analogy to the board of the game of the goose) of Fig. 1 and the state of the whole
network can be represented by placing N tokens labelled 1 to N on the 2(θ + 1) spaces.
The state of the network is then specified by selecting a single element of the set:
χ = ΦN . We adopt the following notation: for any x ∈ χ we write x = (x1, . . . xN ), with
xi = (xU

i , x
F
i ) for any i ∈ {1, . . . N}, where xU

i ∈ {0, . . . θ} corresponds to the value of the
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membrane potential for neuron i while xF
i corresponds to the facilitation state. Notice

that the state space size increases very quickly with N and θ:

• for N = 5 and θ = 1, the size is, 45 = 1024,

• for N = 50 and θ = 10, it becomes roughly 2.243 NA, where NA is Avogadro’s
constant.

Figure 1: An illustration where θ = 5. Each node represents a possible membrane
potential value, the first element of the pair (being understood that "5" should be
interpreted as "≥ 5") and a synaptic facilitation value in the second element of the pair.
If the neuron has it synapse facilitated it sits in the outer circle (light blue circle), if its
synapse is not facilitated it sits in the inner circle (light orange squares). The transition
rates are encoded by the color: brown is the rate of "effective spikes" generated by the
network (spike occurring while the synapse of the spiking neuron is still facilitated),
dark green is λ and red is β.

Formally we’re considering a continuous time Markov process (Xt)t≥0 taking value in
the finite state space χ. Its dynamic can be characterized by an infinitesimal generator
Q = (qx,y)x,y∈χ, which is defined by the following requisites. Let x, y ∈ χ such that x ̸= y

and let i ∈ {1, . . . N}, then1:

• Loss of facilitation : Suppose y is such that yj = xj for any j ̸= i and yi = (xU
i , 0)

then qx,y = λδ1(x
F
i ).

• Inefficient spike : Suppose y is such that yj = xj for any j ̸= i and yi = (0, 1),
then qx,y = βδ(θ,0)(xi).

• Efficient spike : Suppose y is such that yj =
(
min(θ, xU

j + 1), xF
j

)
for any j ̸= i and

yi = (0, 1), then qx,y = βδ(θ,1)(xi).

Moreover for any y ̸= x not considered above qx,y = 0 and of course qx,x =

−
∑

y ̸=x qx,y. The key features of this model dynamics are illustrated next with sim-
ulations.

1Here and in the rest of this article δ denotes the Kronecker delta function.
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2.2 Basic dynamics features

2.2.1 Process trajectories

Simulation details are provided in Se. A.1. Figure 2 shows the trajectories of the
“membrane potentials”, ut(i) a realization of Ut(i), and the synaptic facilitation, ft(i) a
realization of Ft(i), of all the (50) neurons of a simulation (N = 50, θ = 5, β = 10, λ = 6.7)
during one time unit.

Figure 2: Trajectories between time units 1 and 2 of the membrane potentials of the fifty
neurons of a simulated network. The traces are blue when the synapse of the neuron is
facilitated and orange otherwise.

This figure displays the complete state of the network. Notice that at any given
time, most of the neurons are in the susceptible state (their membrane potential is ≥ θ).
Notice also that the membrane potentials of the neurons that have not yet reached θ

evolve in parallel. Spike are emitted when the membrane potential of one neuron goes
from θ to zero, this is the only way the membrane potential can decrease. A finer time
display is proposed on Fig. 3.

The features of the model are clearly visible:

• When a neuron with an un-facilitated synapse spikes (the trace is orange when the
membrane potential is at the threshold level just before dropping to 0):

– its synapse gets facilitated (the trace turns blue) immediately after the spike,
– the membrane potential of all the other neurons remains the same.

• When a neuron with a facilitated synapse spikes (the trace is blue when the
membrane potential is at the threshold level just before dropping to 0):

– its synapse remains facilitated (the trace stays blue) immediately after the
spike,

– the membrane potential of all the other neurons that are below threshold
increases by 1.
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Figure 3: Enlarge display between times 1.20 and 1.25 of the data shown of Fig. 2.

2.2.2 It is the same but it is not the same

We now turn to the key property our model was designed to exhibit. The next two figures
(4 and 5) show spike trains displayed as raster plots (every spike is represented by a
dot) of the same network of 50 neurons started from the same initial state but using two
different sequences of (pseudo) random numbers. Fig. 4 shows an abrupt disappearance
of the activity (after 13 time units).

Figure 4: Raster plots of a 50 neurons network, with λ = 6.7, β = 10 and θ = 5. Left,
from time 0 to 14; right from time 12 to 14. Dots are blue when the synapse is facilitated
and orange otherwise

The dots color is blue when the synapse is facilitated and orange otherwise. We see
on the right side of Fig. 4 that the last spikes occurring before the “network death” are
all with an un-facilitated synapse. Fig. 5 shows the same network as Fig. 4, starting from
the same state and remaining active for whole simulation (50 time units).

Judging from the dots pattern, the activity looks regular with a constant ratio of blue
dots over orange dots. But a better way to graphically asses the network activity (network
spiking frequency) is provided by the observed counting process (a step function that
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Figure 5: Same as Fig. 4 but different random numbers sequence. The scale bar is
drawn between time 10 and time 15.

increases by one every time an event occurs) as shown on Fig. 6 for the two simulations
of Fig. 4 and 5. Extracting the slope by eye, we see that the network generates roughly

Figure 6: Observed counting processes for the simulations of Fig. 4 (black) and Fig. 5
(red).

375 events per time unit (before it reaches the quiescent state in the case of the black
trace). We have, qualitatively at least, the behavior we are interested in: the activity
seems “stationary” until it abruptly vanishes.

2.3 The aggregated process

Notice now that the dynamics of our system is invariant with respect to the permuta-
tion of the neurons: they are all equivalent members of the network. We are moreover
interested in the network state, as opposed to the individual neuron states. For these
reasons we might focus on the number of neurons in each possible state at each time. In
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order to do this, for any x ∈ χ and any (i, j) ∈ {0, . . . θ} × {0, 1} we define

z(i,j)(x) =

N∑
k=1

δi(x
U
k )δj(x

F
k ).

Then z(i,j) is simply a function from χ to {0, . . . N} counting the number of neurons
having membrane potential i and facilitation state j. For any (i, j) ∈ {0, . . . θ}×{0, 1} and
any time t ≥ 0 we might now define the stochastic version of these counting functions:

Zt(i, j) = z(i,j)(Xt).

Furthermore, for any t ≥ 0 we write Zt = (Zt(i, j))(i,j)∈{0,...θ}×{0,1}, and the result-
ing process (Zt)t≥0 is a continuous-time Markov chain taking value in the set S =

{0, . . . , N}{0,...,θ}×{0,1}. For any z ∈ S we adopt the following notation: zi,j denotes the
value in {0, . . . , N} corresponding to the coordinates i ∈ {0, . . . θ} and j ∈ {0, 1}, while zi
denotes the ordered pair (zi,0, zi,1). Moreover for any i ∈ {0, . . . θ} we write

zi,• = zi,0 + zi,1.

In the following, if a state z is such that zi,• = k we adopt the terminology of saying
that there are k neurons at level i. Furthermore notice that because the number of
neurons in the system is fixed to N we may narrow down the state space a bit; the range
of the process (the actual state space) is R ⊂ S, defined as:

R =

{
z ∈ S :

θ∑
i=0

zi,• = N

}
.

The size of this state space is much smaller than the one we started from, since instead
of having (2 (θ + 1))

N it has “only” [17, Sec. II.5, p. 38]:
(
N+2θ+1
2θ+1

)
elements. Compared

to the previous considered cases we get:

• for N = 5 and θ = 1, the size is 56,

• for N = 50 and θ = 10, it becomes roughly 5.5× 1017.

It is easy to obtain the dynamics of the process (Zt)t≥0 from the definition of (Xt)t≥0.
We write this dynamic explicitly in term of maps from R to R corresponding to the three
possible events susceptible to affect the system. The map corresponding to efficient and
inefficient spikes will be denoted respectively π and π∗, and the map corresponding to a
loss of facilitation on a neuron at level i will be denoted π†

i . Suppose the current state is
z ∈ R.

• Loss of facilitation: When it happens at level i ∈ {0, . . . θ} the number of un-
facilitated neurons at level i increases by 1, and the number of facilitated neurons
decreases by 1. The map π†

i is therefore defined by:(
π†
i (z)

)
j
=

{
(zi,0 + 1, zi,1 − 1) if j = i,

(zj,0, zj,1) otherwise.

• Inefficient spike: This event leads to a decrease of the non-facilitated neurons at
level θ by one and an increase of the number of facilitated neurons at level 0 by
one (red arrow from square (5, 0) to circle (0, 1) in Fig. 1). The map π∗ is therefore
defined by: (

π∗(z)
)
j
=


(zθ,0 − 1, zθ,1) if j = θ,

zj if j ∈ {1, . . . θ − 1},
(zθ,0, zθ,1 + 1) if j = 0.
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• Efficient spike: This event leads to a decrease of the number of facilitated neurons
at level θ by one and an increase by zθ−1,1 (when the spike comes from a neuron
with a facilitated synapse, all neurons get their membrane potential increased by
one except the one that spiked, whose membrane potential drops to 0), while the
number of non-facilitated neurons at level θ increases by zθ−1,0. The number of
facilitated neurons at level 0 is set to 1, and the number of non-facilitated neurons
at level 0 is set to 0. Moreover for i ∈ {1, . . . , θ − 1}, the number of facilitated
(resp. non-facilitated) neurons at level i is set to zi−1,1 (resp. zi−1,0). On Fig. 1, the
contents of all the circles and squares rotate by one step counter clockwise, except
for element (0, 0) that becomes 0, element (0, 1) that becomes 1 and elements (5, 0)

that adds the content of element (4, 0) to its own and element (5, 1) that also adds
the content of (4, 1) to its own and decrease by 1. The map π is defined by:

(
π(z)

)
j
=


(zθ,0 + zθ−1,0, zθ,1 − 1 + zθ−1,1) if j = θ,

(zj−1,0, zj−1,1) if j ∈ {1, . . . θ − 1},
(0, 1) if j = 0.

Then the infinitesimal dynamic of the process (Zt)t≥0 is given by the following:
starting from some state z ∈ R, inefficient spikes occur at rate βzθ,0, efficient spikes
occurs at rate βzθ,1, and losses of facilitation at level i ∈ {0, . . . θ} occur at rate λzi,1. A
slightly less formal but perhaps more intuitive way of describing the above dynamics
follows, writing z the network state at time t in a matrix form (we show here the transpose
in order to save space):

zT ≡
[
z0,0 z1,0 . . . zi,0 . . . zθ,0
z0,1 z1,1 . . . zi,1 . . . zθ,1

]
A loss of facilitation can occur leading to (changes appear in red and the occurrence
rate appears above the arrow):

zT
λzi,1→

[
z0,0 z1,0 . . . zi,0+1 . . . zθ,0
z0,1 z1,1 . . . zi,1−1 . . . zθ,1

]
Alternatively, an inefficient spike will lead to:

zT
βzθ,0→

[
z0,0 z1,0 . . . zi,0 . . . zθ,0−1

z0,1+1 z1,1 . . . zi,1 . . . zθ,1

]
While an efficient spike will give:

zT
βzθ,1→

[
0 z0,0 . . . zθ,0+zθ−1,0

1 z0,1 . . . zθ,1+zθ−1,1 − 1

]
In the following this will be expressed alternatively as an infinitesimal generator Q in

matrix form, or an infinitesimal generator L in functional form (in Section 7), depending
on what is more suitable for the current purpose.

3 Cutting the state space into pieces

Later we will be interested in studying the quasi-stationary distribution of our system,
that is the stationary distribution associated with the Markov process obtained when
conditioning (Zt)t≥0 on non-absorption. In order to ensure that this actually makes
sense we have two concerns: (i) we would like to properly define the absorbing region;
(ii) prove that the process restricted to the complement of this absorbing region is
irreducible. Once this is established, the existence and uniqueness of the quasi-stationary
distributions follow from classical results (see [12]).
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3.1 Absorbing region

First notice that there is an obvious absorbing set of states for (Zt)t≥0, which are the

states D ⊂ R defined by D = {z ∈ R : zθ,• = 0 and
∑θ−1

i=0 zi,1 = 0}, that is the states with
no neuron at level θ and no facilitated neurons. Then neither a spike, nor a facilitation
loss can happen and the process stays there for eternity.

Nonetheless we would be short-sighted if we stopped there, and took this set D to be
the absorbing region. It is clear that one can find other states which, while not being
properly absorbing, can only lead to D in a bounded number of steps with probability one.
We write Aθ = {z ∈ R : zθ,1 = 0}. Notice that D ⊂ Aθ, moreover if (Zt)t≥0 reaches some
a′ ∈ Aθ at some point, then after some inefficient spikes and after the facilitated neurons
lose their facilitation one after the other (which is the only thing that can happen) the
process hits D, and again stays there for eternity. This happens in a finite number
of transitions—at most 2N of them actually, which corresponds to the case in which
a′θ,0 = N . More generally, for any i ∈ {1, . . . θ} define:

Ai =

z ∈ R :

θ∑
j=i

zj,1 ≤ θ − i

 .

Notice that, for i = θ, this agrees with the previous definition. Furthermore it is easy
to see that if at some point the process (Zt)t≥0 reaches Ai for some i ∈ {1, . . . , θ}, then
with probability one it then reaches Aθ after a maximum of θ − i efficient spikes, and
again reaches D after some inefficient spikes and facilitation losses.

For the case i = 0 we need to be a little bit more careful, since when non-facilitated
neurons at level θ spike the number of facilitated neurons at level 0 increases, which in
turn could prevent the process from being absorbed. Therefore, we define

A0 =

z ∈ R : zθ,0 +

θ∑
j=0

zj,1 ≤ θ

 .

Again it is easy to see that, if (Zt)t≥0 reaches A0 at some point it then hits Aθ in a
maximum of θ spikes and then gets absorbed. Finally we define the absorbing region to
be:

A =

θ⋃
i=0

Ai.

We claim that this is the correct definition of the absorbing region, meaning that:

1. once A has been reached the system cannot get out of it, and eventually gets
definitively absorbed in D, which happens with probability one in a bounded
number of steps2,

2. and if the system is in Ac then it has a positive probability of staying out of A for
an arbitrarily big number of steps.

The first point is simply a reformulation of the discussion above. The second point is
a consequence of the important fact that, whenever the process starts outside A, there
is always a positive probability of having an arbitrarily big number of (efficient) spikes in
any time interval of arbitrary length, with no facilitation loss in the meantime. We will
see in the next section that we can actually go further than that, and show that once the
state space has been restricted a little bit, then when starting in Ac any other state from
Ac can be reached.

2For example one can easily see from the considerations above that the number of transition to reach D
from any point in A has to be less than θ + 2N , even if it is certainly not the sharpest possible bound.
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3.2 Irreducibility

One can easily see that, even when A has been taken out of the state space R, the
process (Zt)t≥0 is not properly irreducible. Consider for example the class R′ ⊂ R of
states defined by

R′ = {z ∈ R : zi,• = 0 for some i ∈ {0, . . . , θ − 1}} .

Let z ∈ R′\A and suppose that (Zt)t≥0 starts from z. First suppose that z0,• = 0.
Notice that if no spike occurs in the future, then all neurons lose their facilitation and
soon the system reaches A. Otherwise, after the first spike the system reaches some
state z′ which is such that z′0,• ≥ 1, and then this inequality remains true for eternity, as
the only way for the number of neurons at level 0 to decrease is if there is an efficient
spike, moving neurons from level 0 to level 1, but in this case the number of neurons at
level 0 is immediately reset to 1 (because the membrane potential of the spiking neuron
is reset to 0). Now if we suppose that z0,• ≥ 1 but z1,• = 0, then at the instant of the first
efficient spike the system reaches a state z′ such that z′1,• ≥ 1, and again, the only way
the number of neurons at level 1 can then be affected is when there is an efficient spike,
which push the value at level 0 to level 1, so that it can never be less than 1 (because we
already know that at level 0, there cannot be 0 neuron anymore). If both z0,• and z1,•
are equal to 0, then it takes at maximum two spikes (the second one being efficient) to
obtain the same result. More generally it is easy to see how the same argument applies
recursively to prove the following statement.

Lemma 3.1. let z ∈ R′\A and let (Zz
t )t≥0 be the process starting from z. Then either

(Zz
t )t≥0 is absorbed in A before reaching R\R′, or it reaches R\R′ and then never hits

R′ again. In the second case R\R′ is reached after a maximum of θ − 1 efficient spikes.

While a recent article [9] has treated the existence of a quasi-stationary measure for
discrete-time Markov chains in such a case, that is when the state space is not properly
irreducible but consists in two successive classes, to the best of our knowledge results
are still lacking in the continuous-time framework. Nonetheless, as R′ is always left after
a maximum of only θ − 1 efficient spikes, it might simply be discarded from the state
space. Indeed what the lemma above is essentially saying is that states in R′ are atypical
states, artifacts that are only possible if we force the system to start from there, which
are soon left, with no return possibility. Thus we will simply get rid of R′ and consider
the restricted state space R̂ = R\R′, and then define the subset R∗ = R̂\A, which is the
support of (Zt)t≥0 previous to extinction. We are now set to prove the main result of this
section.

Proposition 3.2. (Zt)t≥0 is irreducible on R∗.

Proof. Fix x, y ∈ R∗ and some t > 0. We shall find a sequence of states y0, y1, . . . yn ∈ R∗

such that for s > 0 we have

P
(
Zx
s = y0

)
> 0,

P
(
Zyi

s = yi+1
)
> 0 for any i ∈ {0, . . . n− 1},

and P
(
Zyn

s = y
)
> 0.

Of course the exact value of s is unimportant, as in our continuous time setting if this
is true for some s then it is true for any s. Once this has been established, the result
evidently follows from Markov property:
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P (Zx
t = y) ≥ P

(
Zx

t
n+2

= y0, Zx
2t

n+2
= y1, . . . , Zx

(n+1)t
n+2

= yn, Zx
t = y

)
= P

(
Zx

t
n+2

= y0
)
P
(
Zy0

t
n+2

= y1
)
. . .P

(
Zyn

t
n+2

= y
)
> 0.

Figure 7: Illustration of the idea behind the proof of Proposition 3.2
in a minimal example with N = 10 and θ = 2.

We now define our sequence. It is advisable to take a glance at Figure 7 before
reading the following text, which is a somewhat laborious (but necessary) translation
of a nonetheless simple idea. For the sake of notation clarity the first state in the
sequence will actually be written x′, the next state being y0 and so on. x′ is the state in
R∗ which is such that x′

θ,1 = N − θ, and x′
i,1 = 1 for all i ∈ {0, . . . θ − 1} (and of course all

other coordinates to 0). One can easily see that there is always a positive probability
to reach x′ from x. Indeed suppose that, starting from x, the system undergoes exactly
θ efficient spikes (and that nothing else happens in-between). This sequence of events
has positive probability starting from Ac, moreover this has the effect of pushing all
non-facilitated neurons to level θ. Then suppose that all these non-facilitated neurons at
level θ spike—and thus become facilitated—and that then the systems undergoes again
exactly θ effective spikes (and that no facilitation loss happens in the mean time). This
sequence of events is of positive probability and whatever x is, the process ends up on
x′.

Now we define the other elements of the sequence. For any k ∈ {0, . . . θ− 1} the state
yk is defined by:

yki,1 = yθ−k+i,• for i ∈ {0, . . . k},

ykθ,1 = N − θ + k + 1−
θ∑

i=θ−k

yi,•,

and if k < θ − 1 then yki,1 = 1 for i ∈ {k + 1, . . . θ − 1}.
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Moreover the penultimate state in our sequence (before y) is yθ, defined by yθi,1 = yi,•
for i ∈ {0, . . . θ}. First we show that for any k ∈ {0, . . . θ} the state yk is indeed outside A.
In order to do this it is sufficient to show that the number of facilitated neurons at any
level is greater or equal to 1. The fact that y /∈ R′ implies (by definition) that yi,• ≥ 1 for
any i ∈ {0, . . . θ}, and thus we have yθ /∈ A as well. Now pick some k ∈ {0, . . . θ − 1}. For
i ∈ {0, . . . k} we have yki,1 ≥ 1 for the same reason, and for i ∈ {k + 1, . . . θ − 1} we have
yki,1 = 1. Finally to check ykθ,1 ≥ 1 use again the fact that y /∈ R′ and notice that therefore

θ∑
i=θ−k

yi,• = n−
θ−k−1∑
i=0

yi,• ≤ n− θ + k.

This implies that

ykθ,1 = n− θ + k + 1−
θ∑

i=θ−k

yi,• ≥ 1.

All levels are checked, and therefore yk /∈ A.
Let see how the system might reaches y0 from x′. y0 is the state such that y0θ,1 =

n− θ − (yθ,• − 1), y01,1 = y02,1 = . . . = y0θ−1,1 = 1 and y00,1 = yθ,•. Then it is clear that y0 is
reached from x′ if exactly yθ,• − 1 neurons at level θ lose their facilitation and then emit
a non-efficient spike one after the other. This happens with positive probability. The fact
that there is enough facilitated neurons at level θ in x′ for this to happen follows from
the fact that yθ,• = n−

∑θ−1
i=0 yi,• ≤ n− θ (remember that y /∈ R′, so that yi,• ≥ 1 for any

i ∈ {0, . . . θ − 1}).
Now we shall find a way of going from yk to yk+1 for any k ∈ {0, . . . θ − 1}. We know

that yk /∈ A so that with positive probability there is an efficient spike occurring in
the system before anything else. Let zk denote the state reached after this spike. The
number of active neurons at level θ in the current state of the process cannot decrease,
since one neuron was taken out (the spiking neuron) and at least one was added (exactly
one for k < θ − 1 and possibly more if k = θ − 1), that is zkθ,1 ≥ ykθ,1. For the levels from

1 to θ − 1 the values are simply pushed one-step upward, that is zki,1 = yki−1,1 for any

i ∈ {1, . . . θ − 1}. Finally evidently zk0,1 = 1. In other words we have zki,1 = yk+1
i,1 for any

i ∈ {1, . . . θ−1} and to go from zk to yk+1 it only remains to find a way to make it agree at
level 0 and θ as well. But this is easy using the same trick as in the previous paragraph: it
suffices that the system undergoes exactly yθ−(k+1),• − 1 successive facilitation losses at
level θ and then the same number of inefficient spikes. This obviously fixes the number of
neurons at level 0, and therefore the number at level θ as well, since the different levels
have to sum up to n. Moreover there is always enough facilitated neurons at level θ in zk

for this to happen with positive probability, as shown by the following computation:

zkθ,• = ykθ,• = n− θ + k + 1−
θ∑

i=θ−k

yi,•

=

θ−k−1∑
i=0

yi,• +

θ∑
i=θ−k

yi,• − θ + k + 1−
θ∑

i=θ−k

yi,•

=

θ−(k+1)∑
i=0

yi,• − θ + k + 1

= yθ−(k+1),• +

θ−(k+1)−1∑
i=0

yi,• − θ + k + 1

≥ yθ−(k+1),•.
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To obtain le last inequality we have used the fact that, as y /∈ R′, the elements in the sum
need to be greater or equal to 1.

It only remains to go from yθ to y, but this is very easy: this will happen if there
is exactly y0,0 facilitation losse(s) at level 0 in the process starting from yθ, then y1,0
facilitation losse(s) at level 1 and so on, with no spike in the mean time. This happens
with positive probability and the proof is over.

4 Quasi-stationary distribution

As a consequence of the irreducibility proven in the previous section, classical results3

guarantee that there exists a unique probability measure µ supported by R∗, called the
quasi-stationary distribution of (Zt)t≥0, which is such that for any z ∈ R∗ and any t ≥ 0:

P (Zµ
t = z | Zµ

t /∈ A) = µ(z).

Furthermore, not only the theory guarantees the existence and uniqueness of such
probability measure, but it also provides a direct method to actually compute it. In order
to explain how this is done we consider the infinitesimal generator Q of (Zt)t≥0. Suppose
we re-indexed the states by mapping the elements in A into {1, . . . , |A|} and the ones of
R∗ into {|A|+ 1, . . . , |A|+ |R∗|}. Then the matrix Q looks like

Q =

(
A O
R T

)
,

where the matrix A is the sub-generator corresponding to the transitions occurring
inside A, T is the matrix corresponding to the transitions occurring inside R∗, R is the
matrix corresponding to the transitions occurring from R∗ to A, and O is a matrix full of
0 with |A| rows and |R∗| columns. As explained earlier we might as well identify A to a
single absorbing state and hence write

Q =

(
0 0
r T

)
,

where 0 designates the null row vector of length |R∗| and r is a non-null column vector,
of length |R∗| as well. Then, following [26] (pages 214 and 215), the appropriate version
of Perron-Frobenius theorem ensures the existence of a left-eigenvector µ ∈ [0, 1]|R

∗|

associated to the Perron-Frobenius eigenvalue αPF :

µT = αPFµ. (4.1)

We know moreover that αPF ∈ R and that it is the largest eigenvalue in the real
part, that is Re(αPF ) > Re(α) for any eigenvalue α ̸= αPF . On the other hand we also
know that µ is unique up to a multiplicative constant, so that there exists only one vector
satisfying both (4.1) and

µ1 = 1, (4.2)

where 1 denotes the column vector of length |R∗| with only 1’s. These facts clearly
suggest a simple procedure to obtain a particular QSD:

1. first compute the eigenvalues of the matrix T and keep only the one that is maximal
in the real part,

2. then obtain the left eigenvector associated to this Perron-Frobenius eigenvalue and
normalize it so that it satisfies (4.2).

3good references on the subject are [12], [33] and section 4.6 in [26]
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However, as n and θ grow, the computational cost of using such method for our model
rapidly explodes, so that we ought to design a more efficient approximate method. This
is actually the subject of Section 7. Now, writing T(t) for the (lossy) transition matrix
associated to the transitions occurring in R∗ up to time t we have

T(t) =
∞∑
k=0

Tktk

k!
,

so that applying (4.1) and denoting γ = −αPF gives

µT(t) =
∞∑
k=0

(αPF t)
k

k!
· µ = e−γtµ. (4.3)

Then taking the sum of all the elements of both vectors on the left-hand side and on the
right-hand side respectively in the equation above gives that for any t ≥ 0

P (Zµ
t /∈ A) = e−γt. (4.4)

In words, the time of extinction of the system when the initial state is chosen according
to the QSD has an exponential distribution of some parameter γ. As γ is simply −αPF , a
by-product of the two-steps procedure defined earlier is that we immediately obtain the
rate of the extinction time when the system start from the QSD. Moreover, a classical
result states that not only µ is quasi-stationary, but it is also the unique Yaglom limit,
meaning that for any states x and z in R∗ the following holds4

lim
t→∞

P (Zx
t = z | Zx

t /∈ A) = µ(z). (4.5)

In other words, whatever the distribution of the initial state, there is always relaxation
toward the QSD for the unabsorbed process. This two last points are of crucial impor-
tance, since one of our goal is to establish the metastable nature of our system, which
requires that we show that the time of extinction, starting from any given state in R∗, is
exponentially distributed. But thanks to (4.4) and (4.5) this will be established at the
condition that we show that the relaxation time toward the QSD is negligible relative to
the extinction time. This last point will be studied by numerical means.

5 Solution for N small

A concrete example of an explicit QSD construction (Sec. 4) for the model of Sec. 2.3
is presented next. Since the size of model state space grows very rapidly with N and θ,
we consider here rather small values for these parameters, namely N = 5 and θ = 1.

5.1 The Q matrix as a graph

The state space has only 56 elements and all the states can be displayed as shown on
Fig. 8. On this figure the states are explicitly represented as zT (columns correspond to
membrane potential values: 0 for the first column and 1 for the second; rows correspond
to the synaptic facilitation value: 0 for the first row and 1 for the second). Each element
of zT contains the “headcounts”: how many of the five neurons of the network have the
corresponding membrane potential and synaptic facilitation state. The thickness of the
arrows represents the type of transition: synaptic facilitation loss for thin arrows and
spike for thick ones. The states belonging to R∗ are shown with a light blue background
on Fig. 8. Each such state has at least one arrow leading to it from another “blue” state
and at least one arrow leaving it for another “blue” state.

4See Theorem 4.27 in [26].
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Figure 8: A network with 5 neurons and θ = 1. Configurations that belong to set A

appear in gray filled boxes, the ones that belong to set R∗ appear in light blue filled
boxes with the index of the configuration on the left (in order to read the next matrix),
while the ones belonging to set R′\A appear in white filled boxes. Transitions due to a
spike appear as thick arrows, while transitions due to a synaptic facilitation loss appear
as thin arrows.
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5.2 The T matrix

Matrix T of Sec. 4 can be here explicitly represented as follows (the row and column
indices correspond to the numbers of the “blue” states on Fig. 8):

• . . . . . . . . . . . 1 . . . . . . . . . . . . . . . .
2 • . . . . . . . . . . . . . . . . . . . 1 . . . . . . .
. 3 • . . . . . . . . . . . . . . . . . . . . . . . 1 . .
. . 4 • . . . . . . . . . . . . . . . . . . . . . . . . 1
1 . . . • . . . . . . . . . . . . . . . . . . . . . . . .
. 1 . . 1 • . . . . . . 1 . . . . . . . . . . . . . . . .
. . 1 . . 2 • . . . . . . . . . . . . . . 1 . . . . . . .
. . . 1 . . 3 • . . . . . . . . . . . . . . . . . . 1 . .
. . . . . 2 . . • . . . . . . . . . . . . . . . . . . . .
. . . . . . 2 . 1 • . . 1 . . . . . . . . . . . . . . . .
. . . . . . . 2 . 2 • . . . . . . . . . . 1 . . . . . . .
. . . . . . . . . 3 . • . . . . . . . . . . . . . . . . .
. . . . . . . . . . 3 1 • . . . . . . . . . . . . . . . .
. . . . 2 . . . . . . . 2 • . . . . . . . . . . . . . . .
. . . . . 2 . . . . . . . 1 • . . . . . . 2 . . . . . . .
. . . . . . 2 . . . . . . . 2 • . . . . . . . . . . 2 . .
. . . . . . . 2 . . . . . . . 3 • . . . . . . . . . . . 2
. . . . . . . . 2 . . . 2 . 1 . . • . . . . . . . . . . .
. . . . . . . . . 2 . . . . . 1 . 1 • . . 2 . . . . . . .
. . . . . . . . . . 2 . . . . . 1 . 2 • . . . . . . 2 . .
. . . . . . . . . . . 2 2 . . . . . 2 . • . . . . . . . .
. . . . . . . . . . . . 2 . . . . . . 2 1 • . . . . . . .
. . . . . . . . . . . . . . . . . 3 . . . 3 • . . . . . .
. . . . . . . . . . . . . . . . . . 3 . . . 1 • . . 3 . .
. . . . . . . . . . . . . . . . . . . 3 . . . 2 • . . . 3
. . . . . . . . . . . . . . . . . . . . 3 3 . 1 . • . . .
. . . . . . . . . . . . . . . . . . . . . 3 . . 1 1 • . .
. . . . . . . . . . . . . . . . . . . . . . . . . 4 4 • .
. . . . . . . . . . . . . . . . . . . . . . . . . . 4 1 •

The zeros are not explicitly written but replace by a "•". The factor with which λ should
be multiplied appear in orange, while the factor with which β should be multiplied
appear in blue. We see for instance that state 29 (last row) can make a transition to state
28 (last row and penultimate column) by a single synaptic facilitation loss or to state
27 (last row and antepenultimate column) by one among 4 possible synaptic facilitation
losses. These two transitions correspond to what is displayed on Fig. 8. The actual
values of the diagonal are given next:

index rate index rate index rate

1 -2λ -β 11 -3λ -3β 21 -2λ -4β
2 -3λ -β 12 -λ -4β 22 -3λ -2β
3 -4λ -β 13 -2λ -3β 23 -3λ -3β
4 -5λ -β 14 -2λ -2β 24 -4λ -3β
5 -λ -2β 15 -3λ -2β 25 -5λ -3β
6 -2λ -2β 16 -4λ -2β 26 -3λ -4β
7 -3λ -2β 17 -5λ -2β 27 -4λ -β
8 -4λ -2β 18 -2λ -3β 28 -4λ -4β
9 -λ -3β 19 -3λ -3β 29 -5λ
10 -2λ -3β 20 -4λ -3β

We see that matrix T is very sparse, having at most 3 positive non-diagonal elements per
row.

5.3 Case N = 5, θ = 1, β = 10, λ = 4

We compare now the theoretical/direct results provided by solving Eq. (4.1) and (4.2)
with a straightforward simulation of the Markov process (see Sec. A for implementation
details). 105 independent replicates were simulated, all starting with each of the 5
neurons in the susceptible state (U=1), with a facilitated synapse (F=1). The simulation
of a given replicate was stopped when one of the A states was reached or, if it survived
till then, when time 4 was reached. Fig. 9 shows this comparison. The left part of the
figure displays, on a log ordinate scale, the empirical survival function (a replicate is
“dead” when it reaches one of the A states), as well as the theoretical one provided by
Eq. (4.4). The right part of the figure displays the empirical mean headcounts for each
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state that a single neuron can have—namely: (U = 0, F = 0) (orange), (U = 0, F = 1)

(blue), (U = 1, F = 0) (red) and (U = 1, F = 1) (black)—, together with the expected
values computed from the QSD (horizontal lines):

µi,j =

∫
R∗

zi,jdµ =
∑
z∈R∗

zi,j µ(z) , i, j ∈ {0, 1} ,

where µ(•) is the QSD (Eq. (4.1) and (4.2)). Notice the fast relaxation of the empirical
means towards the corresponding expected values; remember that each replicate starts
with the 5 neurons being susceptible (U = 1) with a facilitated synapse, a state that is
not in R∗ (see Fig. 8, rightmost state). Sec. B presents additional simulations showing
that the case we just illustrated is at least reasonably representative. Our stochastic

Figure 9: Stochastic simulations and direct solution comparison for a network with N = 5,
θ = 1, β = 10, λ = 4. 105 replicates were used for the simulations. Left, the empirical
survival function (black), together with the theoretical straight line (orange) whose slope
is given by γ in Eq. (4.1), (4.3) and (4.4); right, the empirical mean headcounts of the
four states (see legend), together with the expected values computed from the QSD (Eq.
(4.2)) shown as horizontal lines.

simulations can be used for computing the empirical distributions, among the R∗ states,
of the alive replicates at different times. This is what is shown on the upper part of
Fig. 10. There a “line plus glyph” display is used instead of the vertical bars that would
have been be more appropriate for a single distribution. When looking at these graphs,
the reader should therefore keep in mind that the only meaningful values are the ones
indicated by the glyphs. The latter are located at integer values of the abscissa and
correspond to the R∗ states indexed on Fig. 8. The lines in-between the glyphs are here
to help seeing the profile of the distributions: the distributions at the four different times
are (essentially) a scaled copy of a fundamental one, the QSD. The decaying values of
the empirical distributions with time is just the consequence of replicates leaving the
R∗ set for the A set (Fig. 9, left). The profile identity of the empirical distributions is
what is illustrated on the bottom part of Fig. 10: here the empirical distributions have
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Figure 10: Stochastic simulations of a network with N = 5, θ = 1, β = 10, λ = 4. 105

replicates were used for the simulations. Top, empirical distributions of the still alive
replicates among the 29 states of R∗ at four different times: 0.5, 1.0, 1.5 and 2.0. Bottom,
scaled versions of the above distributions (they sum to 1) and theoretical QSD (thick red
line).

been normalized to sum to 1, and the QSD as been added (thick red line). The key
feature justifying the name of the quasi-stationary distribution (QSD) is illustrated here:
considering the alive replicates only, the fraction of them in each state of R∗ does not
change with time.

6 Solution for N big

When N and θ grow, the number of states in R∗,
(
N+2θ+1
2θ+1

)
, becomes very quickly, very

large. Finding the Perron-Frobenius eigenvalue αPF (Eq. (4.1)) and the QSD (Eq. (4.1)
and (4.2)), as we did in the previous section, is not doable anymore and we have to
stick to stochastic simulations. The direct comparison of the theoretical and simulation
based results presented in the last section does nevertheless give us confidence in our
stochastic simulation code—we can add to that the simplicity of this code of course. We
consider here networks with a fixed ratio N/θ = 5, N = 50 and N = 500. Like in the
previous section, 105 replicates are used and all replicates start with all the neurons
in the susceptible state with a facilitated synapse. Fig. 11 shows the increase of the
survival time with the network size (N at constant N/θ ratio). Looking at the graph we
see that the level of 105/e (the level at one time constant) is reached at time ∼ 0.5 with
N = 5, ∼ 1.5 with N = 50 and ∼ 3.8 with N = 500.

On the other hand, as shown by Fig. 12, the relaxation from the initial state, that
is not in R∗, towards the QSD value is “fast” (< 1). It does not depend strongly on the
network size (the empirical mean displayed on the figure for N = 50 has been scaled
to facilitate the comparison). This figure only shows the evolution of the mean number
of susceptible neurons with a facilitated synapse in order to reduce clutter/improve
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Figure 11: Empirical survival function from stochastic simulations of networks with
N = 5, θ = 1 (black), N = 50, θ = 10 (blue), N = 500, θ = 100 (orange) and β = 10, λ = 5.
105 replicates were used for each parameter set. Each replicate with each parameter set
started with all the neurons susceptible and all synapses facilitated. Dotted horizontal
line, level at one time constant.

readability5. Seeing this figure, the reader should abstain from jumping to the conclusion
that the mean QSD value, µθ,1, is proportional to the network size. As the approximate
solution developed in the next section will make clear, this is only true when β µθ,1 ≫ λ

and this order of magnitude difference becomes more accurate as N grows. Looking at
the middle right panel of Fig. 13 in Sec. B the reader can see that for N = 5, the QSD
mean value is closer to 2 (and would therefore be at 200 using the proper scaling on
Fig. 12).

7 Approximation of the first moment of the Quasi-stationary dis-
tribution: mean-field analysis

7.1 What is approximated?

The method presented in Section 4 to obtain the QSD of the system using Perron-
Frobenius Theorem becomes rapidly intractable as the number of neurons in the system
grows. To detect the emergence of the QSD along a particular trajectory it might
therefore be useful to design some less costly approximate method.

In order to do so we would like to compute the expected values of the number of
elements in each possible combinations of membrane potential and facilitation states
under the QSD. While in the finite setting the only actual invariant measure is trivial6,
and therefore unrelated to the QSD, solving the steady-state equations outside of the
absorbing region shall give a good approximation of the QSD at the macroscopic scale
(when N is big). Moreover, in accordance with classical mean-field theory, we might

5Showing all empirical means would require 22 curves for θ = 10 and 102 for θ = 100.
6In other words it concentrates all the mass on the absorbing states.
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Figure 12: Scaled mean number of susceptible neurons with a facilitated synapse as a
function of time. Parameter used: N = 50, θ = 10 (blue), N = 500, θ = 100 (orange) and
β = 10, λ = 5. 105 replicates were used for each parameter set. Each replicate with each
parameter set started with all the neurons susceptible and all synapses facilitated. The
dotted lines show the approximate QSD mean values. They are the numerical solutions
of the implicit Eq. (7.23) obtained in the next section.
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neglect pairwise correlations between neurons in order to solve these equations, and
therefore proceed to obtain an explicit macroscopic approximation of the QSD.

More precisely, for any (i, j) ∈ {0, . . . θ} × {0, 1}, let µi,j denote the QSD mean value:

µi,j =

∫
R∗

zi,jdµ.

We adopt the same notation as for elements of R and for any i ∈ {0, . . . θ} we write

µi,• = µi,0 + µi,1. (7.1)

In the following we write the infinitesimal generator of (Zt)t≥0 as a functional operator
L, defined by:

Lf(z) = βzθ,1
(
f(π(z))−f(z)

)
+ βzθ,0

(
f(π∗(z))−f(z)

)
+

θ∑
i=0

λzi,1

(
f(π†

i (z))− f(z)
)

(7.2)

where f is any suitable test function and z ∈ R. In order to get the infinitesimal rate
of change of the number of neuron at coordinate (i, j) ∈ {0, . . . θ} × {0, 1} in (Zt)t≥0,
starting from some state z ∈ R, we consider the functions from R to {0, . . . N} defined
by fi,j : z 7→ fi,j(z) = zi,j . We perform the computation explicitly for f0,0 and let the
reader check the other cases, which follow from similar calculations. The second term
in the right hand side of (7.2) equals 0, as f0,0(π

∗(z))− f0,0(z) = 0—an inefficient spike
doesn’t changes the number of neurons at the coordinate (0, 0). In the third term, all
the elements of the sum equals 0 except for i = 0, where f0,0(π

†
0(z))− f0,0(z) = 1—as a

facilitation loss affects the number of non-facilitated neurons at level 0 only if it occurs on
a neuron of null membrane potential, and when it does so it increases this number by one
unit. For the first term, we have f0,0(π(z)) = 0, and therefore f0,0(π(z))− f0,0(z) = −z0,0.
Finally the complete expression is

Lf0,0(z) = −βzθ,1z0,0 + λz0,1. (7.3)

Now, if µ were a stationary distribution for (Zt)t≥0, by standard results on Markov
processes7 we should have

∫
Lfi,jdµ = 0. Of course, strictly speaking, µ is not a

stationary distribution for (Zt)t≥0, as it is only a quasi-stationary distribution, or in other
words a stationary distribution for the modification of (Zt)t≥0 in which we have prohibited
any transition to the absorbing region A. We will assume nonetheless here that µ is close
enough to be a stationary distribution for (Zt)t≥0 and try to solve

∫
Lfi,jdµ = 0 for µi,j .

Using (7.3), this gives

0 = −β

∫
zθ,1z0,0dµ+ λµ0,1.

We proceed to further approximations by neglecting pairwise correlations, and we
finally obtain:

0 = −βµθ,1µ0,0 + λµ0,1 (7.4)

7See for example theorem 3.37 in [29].
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7.2 Getting the approximate expected values of the QSD

One can proceed similarly for all fi,j , writing the steady-state equation
∫
Lfi,jdµ = 0

as a quadratic multilinear polynomial equation by neglecting pairwise correlations. This
leads to the following system of equations.

0 = −β µθ,1 µ0,1 − λµ0,1 + β µθ,• . (7.5)

For i ∈ {1, . . . , θ − 1}:

0 = −β µθ,1 (µi,0 − µi−1,0) + λµi,1 , (7.6)

0 = −β µθ,1 (µi,1 − µi−1,1)− λµi,1 . (7.7)

And for µθ,0 and µθ,1:

0 = −β µθ,0 + β µθ,1 µθ−1,0 + λµθ,1 , (7.8)

0 = −β µθ,1 + β µθ,1 µθ−1,1 − λµθ,1 . (7.9)

Now we introduce:
ρi =

µi,1

µi,•
, i = 0, . . . , θ . (7.10)

In what follows we assume N > θ, since otherwise the absorbing region covers the whole
state space. The quantity µi,• is the total number of neurons whose membrane potential
is i in the network, regardless of their synaptic facilitation status. ρi is the faction of
neurons with a facilitated synapse among the µi,• neurons whose membrane potential is
i. We have obviously: µi,1 = µi,• ρi and µi,0 = µi,• (1− ρi). If we add Eq. 7.4 and 7.5 we
get with Eq. 7.1 and 7.10:

0 = −βµθ,• (ρθµ0,• − 1) .

The QSD must have a non null value of µθ,1 and therefore of µθ,• otherwise it would be
identical to the absorbing state. In a more useful way we can then write the last equation
as:

ρθµ0,• = 1 . (7.11)

If we add Eq. 7.6 and 7.7 we get with Eq. 7.1:

µi,• = µi−1,• i = 1, . . . , θ − 1 . (7.12)

If we add Eq. 7.8 and 7.9 we get with Eq. 7.1:

ρθµθ−1,• = 1 . (7.13)

Eq. 7.12 implies that we can define κ such that:

κ = µ0,• = µ1,• = · · · = µθ−1,• . (7.14)

In words, all the states below θ are equally populated. Since N =
∑θ

i=0 µi,•, the QSD
must satisfy:

N = κθ + µθ,• . (7.15)

Combining Eq. 7.11 or 7.13 with Eq. 7.14, we get:

ρθ = µθ,1/µθ,• = 1/κ . (7.16)

Using Eq. 7.1, 7.10, 7.14 and 7.16, we can rewrite Eq. 7.5 as:

0 = −βµθ,1ρ0κ− λρ0κ+ βµθ,• ,
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or

ρ0 =
βµθ,•

(λ+ βµθ,1)κ
,

but 1/κ = µθ,1/µθ,• (Eq. 7.16), therefore:

ρ0 =
βµθ,1

λ+ βµθ,1
. (7.17)

Using Eq. 7.1, 7.10, 7.14 and 7.16, we can rewrite Eq. 7.7 as:

0 = −βµθ,1(ρi − ρi−1)κ− λκρi , i = 1, . . . , θ − 1 ,

leading to:

ρi =
βµθ,1

λ+ βµθ,1
ρi−1 , i = 1, . . . , θ − 1 . (7.18)

Combining Eq. 7.17 and Eq. 7.18, we get:

ρi =

(
βµθ,1

λ+ βµθ,1

)i+1

, i = 0, . . . , θ − 1 . (7.19)

Now using Eq. 7.1, 7.10, 7.14 and 7.16, we can rewrite Eq. 7.9 as:

ρθ−1 =
λ+ β

κβ
. (7.20)

Eq. 7.19 and 7.20 together lead to:(
βµθ,1

λ+ βµθ,1

)θ

=
λ+ β

κβ
. (7.21)

But Eq. 7.15 and 7.16 imply that:

1

κ
=

θ + µθ,1

N
, (7.22)

leading to:

µθ,1 =
Nβ

λ+ β

(
βµθ,1

λ+ βµθ,1

)θ

− θ . (7.23)

µθ,1 must be solution of Eq. 7.23. If we find such a µθ,1, we immediately get κ (Eq. 7.22)
and µθ,•, the number of neurons at or above the spiking threshold θ (Eq. 7.16). With Eq.
7.19, we get the successive µi,0 and µi,1 for i = 0, . . . , θ− 1, that is, the whole description
of the QSD in terms of its expected values. A comparison between this approximation
for µθ,1 and empirical values computed from stochastic simulations is shown on Fig. 12
in the previous section.

7.3 Remarks

The µθ,1 solution(s) of Eq. (7.23) depend on β and λ only through their ratio: η = λ/β.
So multiplying β and λ by the same factor does not change the solution(s) of Eq. (7.23).
We can consider limiting cases to check if the argument we just developed makes sense.
A network without facilitation loss (λ = 0) is an instance of a limiting case. For such
a network, as soon as a neuron has spiked, its synapse gets facilitated and remains
facilitated forever. Then Eq. (7.23) leads to, µθ,1 = N − θ; Eq. (7.22) gives, κ = 1 and
Eq. (7.17) implies that, µθ,0 = 0. The use of Eq. (7.14) together with Eq. (7.19), yields:
µi,0 = 0 and µi,1 = 1 for i = 0, . . . , θ− 1. We have therefore one neuron (with a facilitated
synapse) at each possible membrane potential value below threshold and all the other
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neurons (with a facilitated synapse) at threshold. This is the state x′ defined in Sec. 3.2
and in Fig. 7 and this is precisely what we expect from the argument developed in that
section.

If there is no threshold (θ = 0), every neuron of the network has two accessible states:
facilitated synapse and un-facilitated synapse; it goes from the first to the second with
rate β and from the second to the first with rate λ. Elementary Markov process results
tell us that the probability of finding a neuron in the facilitated state is β

β+λ leading to

µ0,1 = Nβ
β+λ as given by Eq. (7.23) when θ = 0.

7.4 Back-of-the-envelope calculation leading to ρθ

We can get an approximate value of ρθ =
θ+µθ,1

N (Eq. (7.11) and 7.22) with an even
bolder approach. Quantity βµθ,1 is the rate of efficient spikes; spike making all the other
neurons climb one step on the membrane potential ladder. A neuron that just spiked
has a null membrane potential and a facilitated synapse. That neuron needs θ efficient
spikes in order to be able to spike again and that will require on average θ/(βµθ,1) time
units. Once the neuron membrane potential reaches θ, that neuron can spike again and
will do so with a rate β. The question is: what is the “probability” for the synapse of
that neuron to be still facilitated when its next spike comes? In other words, what is the
value of ρθ? Facilitation is lost with rate λ, that probability is therefore:∫ ∞

0

e−λ(θ/(βµθ,1)+t)βe−βtdt =
β

λ+ β
exp

(
− λθ

βµθ,1

)
.

Now assuming that βµθ,1 ≫ λ, writing

exp

(
− λθ

βµθ,1

)
=

(
1

exp λ
βµθ,1

)θ

and using a first order Taylor expansion for the exponential function leads to:

ρθ =
β

λ+ β

(
βµθ,1

λ+ βµθ,1

)θ

that is what we already obtained (we just have to combine Eq. (7.23), 7.22 and 7.11).

7.5 How good is this approximation

We can first compare the first moments of the QSD derived in Sec. 7.2 with the exact
values provided by the complete QSD of Sec. 4 for the case illustrated in Sec. 5.3: N = 5,
θ = 1, β = 10, λ = 4. The exact results are (also shown as horizontal lines on the right
panel of Fig. 10):

µ0,0 = 0.342, µ0,1 = 1.398, µ1,0 = 1.135, µ1,1 = 2.125

The approximate values are:

µ0,0 = 0.285, µ0,1 = 1.400, µ1,0 = 1.347, µ1,1 = 1.968

Next, we only look at µθ,1 for networks with β = 10, λ = 5, a ratio N/θ = 5 (first table)
or N/θ = 10 (second table) and a sequence of (N, θ) pairs. We compare the output of
stochastic simulation with the approximate calculation. Our numerical solution of the
implicit Eq. (7.23) gives us 4 significant digits after the decimal point (Sec. A.3). The
simulation results are shown with their associated standard error. 105 replicates were
used for the first 2 entries of each table, 104 for the third and 5 × 103 for the fourth.
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Three time units were simulated and the mean values computed at time 2 are reported
in the tables. We used fewer replicates with the larger N values in order to save time.
With N/θ = 5 we observe:

(N, θ) Approx. Simulation
(50,10) 12.563 10.76 ± 0.05

(100,20) 24.526 20.20 ± 0.06
(500,100) 119.738 101.4 ± 0.5
(1000,200) 238.661 212.3 ± 0.9

We see that in this setting the relative approximation error is about 20%. If we change
slightly the setting, N/θ = 10, in order to get higher spiking rates, we observe:

(N, θ) Approx. Simulation
(50,5) 25.216 24.91 ± 0.02

(100,10) 50.400 50.14 ± 0.02
(500,50) 251.866 251.8 ± 0.2

(1000,100) 503.700 503.6 ± 0.3

The standard errors are smaller because: i) fewer replicates reach the “dead set” A per
time units—the statistics are therefore computed with more observations—; ii) when
the spiking rate is larger, the QSD is less spread around its first moments (its standard
deviation is smaller) and our key approximation (Sec. 7.1) is more accurate. We see that
when the network spiking rate is large enough (because N/θ is large as shown here, but
that also holds if λ is “small”), the approximate solution becomes very close to the truth.

8 Conclusions

We proposed a simple stochastic model of strongly interconnected neurons exhibiting
synaptic facilitation, and suggested that the metastable properties of such system might
give an interesting explanation of the mechanism behind the sustained activity observed
experimentally in networks of neurons involved in short-term memory.

The metastability of this system was established using arguments based on the
notion of quasi-stationarity. These arguments are partially based on simulations and
are therefore not entirely rigorous from the mathematical point of view. Nonetheless it
allows a very simple and intuitive comprehension of the phenomenon of metastability:
the system started in any given state rapidly converges to the Yaglom limit, which
happens to be the QSD as well, and, once there, it evolves in an almost stationary
manner for an exponentially distributed random time, due to classical results about
QSD. The fact that the relaxation toward the QSD is much faster than the extinction
of the system implies that the extinction time is exponentially distributed as well—
asymptotically with respect to the number of neurons—starting from any state out of
the absorbing region, i.e. genuine metastability. Establishing that fact is actually the
only missing piece to make the argument rigorous, and it should be closely related to a
large spectral gap between the eigenvalues with largest and second-largest real parts,
because, while extinction is dominated by the former, relaxation ought to be dominated
by the latter. This shall be further investigated in future work. It shall also be noticed
that such arguments would then apply to a large class of Markov processes (at least any
irreducible Markovian system having an absorbing state)—including the famous Contact
process for example, which has been rigorously proven to exhibit metastability by various
means [39, 8, 15, 36], but with technical complications making the understanding of the
fundamental reasons behind the phenomenon difficult to interpret.
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A Some numerical details

This section provides a brief outline of the numerical methods implemented to
simulate our model, to “solve the QSD” (Eq. (4.1) and (4.2)) and the implicit equation
(7.23). The actual codes and their comprehensive documentation can be found on our
GitLab repository8.

A.1 Simulations

The simulation of the Markov processes defined in Sec. 2.1 and 2.3 is straightforward
once the intensity matrix Q is known. Our Fortran code implements algorithm 2.7.2 of
[38, p. 80]. This algorithm is just the constructive definition of a Markov process of [23,
Sec. 8.3.2, p. 243]. Our simulation code requires a uniform (pseudo)random number
generator; we used the implementation of the xoshiro128plus generator [7] provided
by Jannis Teunissen’s rng_fortran9.

A.2 QSD computation

The eigenvalues and left eigenvectors of T (Eq. (4.1) and (4.2)) were obtained with
subroutine dgeev of LAPACK-3.11.010. Since the LAPACK code is written in FORTRAN 77,
we used the modern Fortran interface provided on GitHub by the Numerical Algorithms
Group (NAG)11.

A.3 Solving the implicit Eq. (7.23)

We used a modification of Arjen Markus robust Newton method12 [32]. This code
explicitly brackets the roots of the equation:

µθ,1 + θ − Nβ

λ+ β

(
βµθ,1

λ+ βµθ,1

)θ

and provides therefore an upper bound of its error.

B Additional comparisons between theoretical QSD and simula-
tions

We consider again the setting of Sec. 5, with N = 5, θ = 1, β = 10. As a complement
to the case λ = 4 of Sec. 5.3, we illustrate here cases where λ take values 3, 5 and 8.
The equivalent of Fig. 9 is then obtained and shown on Fig. 13. The basic features are
the same as what is seen on Fig. 9. Not surprisingly, the mean survival depends strongly
on λ; the smaller the latter, the larger the former. The mean number of neurons in the
susceptible state with a facilitated synapse (black curves on the right panels) exhibits a
similar trend. The “noisy” aspect of the empirical means displayed on Fig. 13 bottom,
right (λ = 8) for a time larger than 1.25 are due to the small sample size: few replicates
are still alive past that time.

8https://gitlab.com/c_pouzat/metastability-in-a-system-of-spiking-neurons-with-synaptic-plasticity
9https://github.com/jannisteunissen/rng_fortran.

10https://www.netlib.org/lapack/.
11https://github.com/numericalalgorithmsgroup/LAPACK_Examples.
12robust_newton.f90: https://flibs.sourceforge.net/robust_newton.f90.
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Figure 13: Stochastic simulations and direct solution comparison for networks with
N = 5, θ = 1, β = 10 and λ = 3 (top), λ = 5 (middle), λ = 8 (bottom). 105 replicates were
used for the simulations. Left, the empirical survival function (black), together with the
theoretical straight line (orange) whose slope is given by γ in Eq. (4.1), (4.3) and (4.4);
right, the empirical mean headcounts of the four states (see legend), together with the
expected values computed from the QSD (Eq. (4.2)) shown as horizontal lines.
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