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Abstract

Our sensory systems transform external signals into neural activity, from which per-

cepts are produced. We are endowed with an intuitive notion of similarity between

percepts, that need not reflect the proximity of the physical properties of the cor-

responding external stimuli. The quantitative characterization of the geometry of

percepts is therefore an endeavour that must be accomplished behaviorally. Here we

characterized the geometry of color space using discrimination and matching exper-

iments. We proposed an individually tailored metric defined in terms of the minimal

chromatic difference required for each observer to differentiate a stimulus from its

surround. Next, we showed that this perceptual metric was particularly adequate

to describe two additional experiments, since it revealed the natural symmetry of

perceptual computations. In one of the experiments, observers were required to

discriminate two stimuli surrounded by a chromaticity that differed from that of the

tested stimuli. In the perceptual coordinates, the change in discrimination thresholds

induced by the surround followed a simple law that only depended on the perceptual

distance between the surround and each of the two compared stimuli. In the other

experiment, subjects were asked to match the color of two stimuli surrounded by

two different chromaticities. Again, in the perceptual coordinates the induction ef-

fect produced by surrounds followed a simple, symmetric law. We conclude that the

individually-tailored notion of perceptual distance reveals the symmetry of the laws

governing perceptual computations.
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1 Introduction

The neural computations involved in conscious perception, reflections about the

world, and action planning, are not performed on external stimuli, but rather on our in-

ternal representations of those stimuli. To execute such computations, we are endowed

with an intuitive notion of similarity between stimuli. For example, we can typically tell
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whether two faces are alike or not, whether two tools are exchangeable, or whether two

colors are more or less similar. This ability suggests that percepts can be modeled as

elements of an abstract space equipped with a notion of distance, so that similar objects

be close to each other. If percepts and neural representations are governed by regu-

larities of the natural world [60, 50, 5], the geometry of the perceptual space can be

expected to be related with features of the sensory environment and with the specific

code with which neurons represent such features. The first step to characterize such

relation is to have a consistent description of perceptual spaces. This is the goal of this

paper.

The notion of conceptual spaces has been explored by several studies recently, propos-

ing that, for example, the entorhinal-hippocampal network represents not only spatial

information, but more generally, abstract cognitive spaces. A whole variety of cognitive

spaces have been investigated, ranging from simple attributes of sensory stimuli [2, 46],

to highly complex notions, as bird shape [16] or social hierarchy [38]. The hypothesis

is that the items represented in these spaces satisfy geometric constraints such as be-

tweenness and equidistance, so that properties and concepts occupy convex regions

[7]. The geometric aspects of physical space are thus attributed to other spaces, and

are conjectured to be functionally relevant to guide imagination [30, 6] and decision

making [33].

We access the elements of our conceptual spaces introspectively: We know what

color is because we experience color, and the same type of private insight is used to

determine notions of similarity. The ontological status of conceptual spaces and their

notions of similarity is therefore debatable. Do they have precise properties, and if yes,

can we access them objectively? How far can we go? A priori, the existence of an

intuitive notion of similarity between a collection of items does not guarantee that the

items be describable as points in a space endowed with a topology or a geometry, let

alone a Riemannian geometry, in which distances and angles obey exact mathematical

relations, and surfaces or volumes can be measured quantitatively. In this paper, we

aim at providing an experimental assessment of the existence of a proper geometry.

Following [47], we work specifically with the space of colors, although the procedure is

also valid for other conceptual spaces.

We first assume that colors form a manifold, that is, a topological space that can be

locally and smoothly mapped to Rn. This assumption is grounded on the observation

that any pair of colors can be connected by a trajectory containing items whose physical

and perceptual attributes vary continuously. By definition, a differential manifold comes

with an Atlas, that is, the set of all the possible coordinate charts over the manifold. Any

such system of coordinates may be employed to parametrize the chromaticity of visual

stimuli, and the choice does not alter the perceived color. Throughout this paper, the

word “color” is used for the percept (the private experience), and the word “chromatic-

ity”, for the physical properties of the electromagnetic spectrum humans are sensitive

to. For most observers, three coordinates suffice to describe uniform chromatic stimuli.

Several notions of distance have been proposed in the literature, using criteria based

on Weber-Fechner’s law [60, 49, 56] or on the premise that color space is homogeneous

under the group of linear transformations [47, 44, 9, 8]. Our emphasis here is twofold:

To search for a notion of distance that (1) describes chromatic perceptual effects in

the simplest possible manner, and (2) is applicable to multiple perceptual paradigms

involving chromatic stimuli.

The search for simplicity is not just for operational convenience. To make an anal-

ogy with physics, one and the same physical law can look extremely simple or extremely

complicated, depending on the metric we choose for space and time. Space-time itself

is intangible, we only have access to events, ultimately perceived as sensory experience.
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Yet, space and time reveal themselves in the model we construct of the world around

us. We observe regularities in the world, and we are able to predict (some of) those reg-

ularities by assuming that events take place at a particular place at a particular time,

and that they are governed by the laws of physics. Quite remarkably, these laws (be

they in their intuitive form, or in their mathematical formulation) become particularly

simple when space and time are measured in specific systems: inertial and cartesian.

In these systems, classical physics is isotropic and homogeneous, so all equations –

Newton’s Mechanics, Coulomb’s Law, Maxwell Field Equations, Heat equation, etc. –

only depend on the relative distances between particles, and remain invariant to rigid

translations and rotations. Predictability would be seriously challenged if the form of

these equations evolved as time went by, or as we moved from one place to the other.

Euclidean inertial systems, hence, play a very special role in our mental representa-

tion of events. In this paper, we pose the question whether a similar situation can be

claimed of specific spaces of phenomenal experience. The geometry of color space is

itself also intangible. Yet, a metric of color space may exist, in which perceptual chro-

matic effects appear to be homogeneous and isotropic. Importantly, in the quest for a

privileged metric, several perceptual paradigms need to be considered, and this is why

the second goal is also required. A metric that provides a simple description of only a

single experiment cannot be claimed to characterize color per se; it is more a property

of one specific task in which chromatic information intervenes.

Assuming such metric exists, the resulting geometry may or may not be Riemannian,

that is, it may or may not result from a metric tensor. If it does, then the set of points

that are all at the same (infinitesimal) distance from a given chosen point conform an

ellipsoid, from which the metric tensor can be derived. In the vicinity of each point, a

special coordinate system known as the “normal coordinates” exists, in which the first

derivatives of the metric vanish, making the geometry locally flat. In General Relativity,

the existence of normal coordinates is the mathematical formulation of the equivalence

principle, stating that in a free falling - or inertial - system, spacetime is locally flat.

If, additionally, the Riemannian manifold has zero curvature, in the normal coordinates

the metric tensor becomes the identity everywhere, so the perceptual distance becomes

Euclidean. In this paper, the normal coordinates are called “perceptual”, since they are

derived from perceptual experiments. In these coordinates the symmetries of percep-

tion are most naturally revealed, just as Euclidean coordinates of physical space are the

ones that most simply reveal the symmetries of Newtonian dynamics.

To illustrate the meaning of the type of perceptual symmetries we are interested

in, we briefly describe the effect of chromatic induction, by which a chromatic context

surrounding a stimulus modifies the color of the stimulus [32, 63, 61]. For example,

a green stimulus appears yellowish when surrounded by cyan, and bluish when sur-

rounded by orange. This effect implies that the function that transforms the activities

of photoreceptors into a higher-level representation of color depends on the chromatic-

ity of the surround. The perceptual shift is repulsive, since the presence of the sur-

round shifts the perceived stimulus color in color space away from that of the surround

[22, 63, 53, 61, 23, 29]. The shift is also non-uniform, since its magnitude, when re-

ported in any of the color coordinates normally used in colorimetry, varies from location

to location in color space [35]. One can then ask whether a coordinate transformation

exists that makes this effect isotropic and homogeneous throughout color space, and

thereby, more symmetric.

Chromatic induction is not the only perceptual effect revealing the inhomogeneity

that color space appears to have in the usually employed coordinate systems. An al-

ternative example is the fact that just-noticeable differences obtained in discrimination

tasks vary throughout color space [40, 65]. Several studies have posed the question

MNA 1 (2021), paper 1.
Page 3/34

https://mna.episciences.org/

https://doi.org/10.46298/mna.7108
https://mna.episciences.org/


The geometry of color space

whether a coordinate transformation exists that makes the just-noticeable differences

uniform [15, 31, 18]. So far, there is no reason to believe that the coordinates that make

discrimination experiments homogeneous and isotropic are the same as those that make

induction phenomena homogeneous and isotropic. However, empirically there are sim-

ilarites between the anisotropies in color discrimination [65] and the anisotropies in

color induction [35]. Therefore, in this paper we ask the question whether all inhomo-

geneities can be eliminated with an adequate choice of the coordinate system. If the

answer is positive, the metric of color becomes not only a property of a particular exper-

iment, but of color in general. Moreover, it is not only a matter of subjective experience,

but also, a latent variable with which all behavioral responses based on chromaticity

can be predicted. Since characterizing the inhomogeneities of all perceptual effects is,

in practice, an unreachable goal, we here more modestly characterize three perceptual

experiments, and agree to scale down the generality of our conclusions accordingly. In

the meanwhile, we may learn something.

The paper is organized as follows. In the Methods section, we describe the behav-

ioral experiments (Sects. 2.1-2.3.3), and we define the perceptual coordinates in terms

of the metric tensor (Sect. 2.4). Next, the Results section starts by describing the corre-

spondence between items in the external world and items in the internal representation

(Sect. 3.1). This step is important, since the mapping need not be one-to-one. In the case

of colors, chromatic contexts cause whole collections of external stimuli to be mapped

onto single percepts. Once the correspondence is characterized, and the elements of

the perceptual space are identified, the geometric structure of percepts is inferred. In

order to constrain the search, in Sect. 3.2 we justify from previous experiments the

assumption that the space of colors is approximately flat, and we formalize the symme-

tries that perceptual laws are presumed to adopt when formulated in terms of a sought

distance function. The rest of the Results section describes the experiments. To derive

the perceptual coordinates in Sect. 3.3 we report the discrimination thresholds along

the S and L −M cardinal directions measured in Experiment I. A notion of distance is

constructed from the obtained thresholds, individually tailored for each observer. The

distance is later employed in Experiments II and III to provide symmetric descriptions

of additional perceptual effects. For example, in Sect. 3.4 (Experiment II) we show

how the thresholds are modified by chromatic surrounds, and confirm the homgene-

ity and isotropy of the effect when expressed in the perceptual coordinates. Next, in

Sect. 3.5 (Experiment III) we report the color shifts induced by chromatic surrounds by

performing asymmetric matching experiments, in which the colors to be matched were

surrounded by different chromaticities. The shifts can be modeled as the consequence

of a repulsive field that, in the perceptual coordinates, is isotropic around the surround

color. Importantly, in the last two experiments, the perceptual coordinates are the ones

obtained from Experiment I, with no additional fitting nor manipulation. Therefore, the

results of all three experiments become symmetric in the same coordinate system. We

conclude that percepts such as colors, though belonging to the realm of subjective expe-

rience, may exhibit elegant mathematical symmetries when described in the adequate

coordinates and with the proper geometry.

2 Methods

2.1 Stimuli

Stimuli were displayed on a 21-inch Sony GDM F520 CRT screen, controlled by an 8-

bit ATI Radeon HD 4200 graphics card. The spatial resolution was 1280×1024 pixels and

the refresh rate 85 Hz. The display was calibrated using a PhotoResearch (Chatsworth,

CA) PR-655 spectroradiometer controlled by the IRIS software [34]. Photoreceptor
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excitations (S̄, M̄ , L̄) of a given stimulus were obtained by linearly filtering the stimulus

spectrum with the [58] cone fundamentals. To define the stimuli, a neutral gray was

chosen as reference (luminance = 105 cd/m
2
, CIE[x, y]= [0.328, 0.328]), with coordinates

(

S̄g, M̄g, L̄g

)

= (1.48, 40.9, 75.1). The cone contrast coordinates of a stimulus were

defined as

(S,M,L) =

(

S̄ − S̄g

S̄g
,
M̄ − M̄g

M̄g
,
L̄− L̄g

L̄g

)

.

These coordinates are invariant under scaling of each of the cone fundamentals. Each

pixel of the screen was colored with integer RGB coordinates in the range between

0 and 255. To increase chromatic resolution, additional RGB values representing in-

termediate chromaticities would be required. Therefore, stimulus patches were filled

with pixels of randomized integer coordinates whose values differed at most in one unit,

thereby creating a finely dithering pattern with a mean chromaticity corresponding to

fractional RGB values. Each pixel was colored with one of the four integer triplets

(RGB)1, (RGB)2, (RGB)3 and (RGB)4 that were closest to the target fractional RGB

value. The four options were chosen in appropriate proportions so that the weighted

average was equal to the desired fractional RGB triplet. As neighboring colors were

indistinguishable at the resolution of single pixels, the resulting stimulus patches ap-

peared uniform to subjects.

All measurements were performed along the two cardinal chromatic axes (Fig. 1C):

the S axis, here denoted as x1 and defined by the condition L = M = 0, and the L −M

axis (x2), defined by the conditions S = 0 and L+M = 0.

2.2 Subjects

Seven subjects (4 female, 3 male), aged between 22 and 32 participated in the

experiments. Subjects gave written consent for participation. Three of the subjects

were informed about the purpose of the study and performed measurements along

both cardinal color space axes. The remaining four were naïve with respect to the

study and performed measurements along a single cardinal color space axis each, ei-

ther x1 = S or x2 = L − M . All observers had normal color vision as assessed by the

Farnsworth–Munsell 100 Hue test, and had normal or corrected to normal visual acuity.

2.3 Procedure

This section describes the experimental procedure. The experiments were per-

formed in a darkened room. Subjects were seated and viewed the display from a dis-

tance of 90 cm. The size of the screen was 40 × 30 cm, subtending a solid angle of

25◦x19◦. Subjects were instructed to fix their gaze on a black circle displayed at the

center of the screen. Each experiment began with at least 2 min of adaptation to the

lighting conditions, during which the subject received instructions and performed test

trials that were not included in the analysis.

2.3.1 Experiments I and II: Discrimination

Experiments I and II determined the minimal chromatic difference that stimuli need to

bear in order for an observer to identify them as different. The task for the observer

was to detect the one out of four stimuli that was chromatically different from the other

three.

A session consisted of 300 trials, lasting for approximately 10 minutes. Throughout

a session, the chromaticity b of the surround remained fixed and constantly displayed.

At the beginning of each trial, a black circle appeared as a fixation point at the cen-

ter of the screen. After 500 ms, four 2◦ square patches were displayed for 150 ms at
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a center-to-center distance of 2° from the fixation point along the cardinal directions.

Three of the patches were colored with the test chromaticity x. The fourth patch was

the target patch and had a slightly different chromaticity x̃. The location of the target

patch was varied randomly from trial to trial among the four alternatives. The observer

was required to report its position using arrow keys on a keyboard. Subjects had un-

limited time to respond. They were allowed to freely set the pace of the experiment by

triggering each trial with a key on the keyboard. In each session, the tested chromatic-

ity x remained fixed, and the altered chromaticity x̃ was chosen randomly among 15

alternatives around x, each sampled 20 times.

In Experiment I, the chromaticity of the surround coincided with that of the three

test patches (Fig. 1A), so the observer had to detect the location of the target patch

Figure 1: Experimental paradigms of the discrimination experiments. (A,

B): Stimulus displays for discrimination experiments, performed with surround chro-

maticity b equal to (A) or different from (B) the tested chromaticity x. C:

Thresholds were measured for eight tested chromaticities on each axis (black

circles). On the axis S the cone-contrast values used for Experiment I

were{−0.58,−0.46,−0.33,−0.18, 0, 0.16, 0.35, 0.54}, and for axis L − M the values

were:{−0.17,−0.13,−0.09,−0.05,−0.01, 0.04, 0.08, 0.12}.The intersection of the axes cor-

responds to the reference gray (0, 0). D: Error probability (black bars) reported by

subject S2 in a session of N = 20 trials per target stimulus, as a function of the S cone

contrast x̃1 of the altered stimulus, for a fixed tested stimulus x1 (red bar). Random

responses are expected to produce 75% of incorrect identifications. As the difference

|x̃1 − x1| between the dissimilar patch and the other three patches increases, the error

probability drops. Error bars denote the standard errors for corresponding binomial dis-

tributions. The fitted parameters of Eq. 2.1 are aℓ = 0.043±0.004, bℓ = 0.191±0.003, ar =

0.07± 0.01, br = 0.354± 0.006.

in a uniform surround. In Experiment II, the surround b had a different chromaticity,

so the observer had to compare the four patches, and detect the target patch (Fig. 1B).

In both experiments, the chromaticity of the surround was varied systematically along

the b1 = S and the b2 = L−M dimensions, while the luminance L+M was maintained

constant (Sect. 2.1). In Experiment I, each time the surround b was modified, the tested

chromaticity x was changed accordingly. Eight different chromaticities were tested

along each axis (values in Fig. 6). In Experiment II, colors of stimuli and surrounds were
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varied independently. Three surround chromaticities were employed on each cardinal

axis, with cone contrast coordinates S = −0.24, 0, 0.16, and L−M = −0.03, 0, 0.03. Eight

different chromaticities were used for the test stimuli on each axis (Fig. 1 C).

As observers selected one among four options, the chance error rate was 75%. This

percentage diminished with increasing discriminability. Figure 1D displays the error

probability for subject S2 in a given session for different altered chromaticities x̃ around

the tested chromaticity x. We defined the discrimination threshold ε as the value of x̃

for which the error probability was equal to the midpoint between pure chance and

perfect performance, i.e. when the error probability was 37, 5%. Thresholds may be

different for increasing and decreasing cone activation [12], implying that the bar plot

of Fig. 1D need not be symmetric around the maximum. In order to take asymmetries

into account, left-side (ℓ) and right-side (r) thresholds were estimated by separately

fitting sigmoid functions to the data for each side of the tested chromaticity. The fitted

functions were

Pℓ,r(x̃) = 0.375 [1± tanh (aℓ,r(x̃− bℓ,r))] , (2.1)

with fitted parameters aℓ and bℓ or ar and br for the left and right side, respectively. The

left (decreasing cone contrast) and right (increasing cone contrast) thresholds of a the

reference chromaticity x were defined as ∆ℓ,r = |bℓ,r − x|, and the mean threshold, as

ε = (∆ℓ +∆r)/2.

2.3.2 Experiment 3: Asymmetric matching

Colored surrounds alter the color of a test stimulus [35]. To test these influences along

the cardinal color axes, we performed Experiment III, an asymmetric color matching

task. In these experiments, test and match stimuli were displayed in surrounds of

different chromaticities. In classical color matching experiments [14, 28, 57, 67], sub-

jects performed the match to the test stimulus by adjusting the match stimulus without

constraints on fixation or presentation time. To control for these factors, and to work

in conditions that were similar to those of the discrimination experiments, we used

a forced-choice paradigm. In each trial, the observer was presented two candidate

patches on one half of the screen surrounded by chromaticity bβ , and was instructed to

select among them the one perceived as most similar to the target patch displayed on

the other half of the screen, surrounded by chromaticity bα (Fig. 2A). The side of the

screen occupied by the target patch was randomized in each trial.

For each combination of test stimulus xα in surround bα, here denoted as xα�bα, the

aim was to determine the match xβ on the surround bβ . In other words, we searched

for the chromaticity xβ that fulfilled the perceptual equality xβ � bβ ∼ xα � bα. Here,

the symbol “∼” means that stimulus xα surrounded by bα appears to have the same

color as stimulus xβ surrounded by bβ . The search for xβ was performed as a staircase

procedure (Sect. 2.3.3).

Three pairs of surrounds were used for each axis. Two of the pairs combined the

neutral reference gray corresponding to the origin of color space with the maximally

and minimally attainable coordinates on the axis, respectively. The cone contrasts of

these surrounds with respect to the neutral gray were Smin = −0.35, Smax = 0.25 for axis

S, and L−Mmin = −0.20, L−Mmax = 0.15 for axis L-M. The third pair did not include

gray, and contained the two other surrounds of Experiment II that were unsaturated

colors in cardinal directions. Their cone contrasts with respect to the neutral gray were

S = −0.24 and S = 0.16 for axis S, L−M = −0.03 and L−M = 0.03 for axis L−M . The

first two pairs were useful to assess the shifts produced by fairly saturated colors, and

to measure the structure of the induction when the distance between the colored and

neutral surround was large. The third pair was selected so as to connect the results of
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Experiment III with those of Experiment II, and to assess the behavior of the shift for

desaturated surrounds.

Subjects initiated each trial by pressing a key on the keyboard. At the beginning

of each presentation both surrounds were shown for 200 ms, together with a black

circle as fixation point. Then, a patch of chromaticity xα was presented on bα and two

patches with chromaticities xp and xq appeared against the surround bβ , one above

the other (top and bottom locations randomized) for 500 ms. All patches subtended a

visual angle of 2◦. After the stimulus presentation, a masking stimulus was displayed

for 500 ms, consisting of randomly sized and located square patches with a balanced

distribution of colors along the corresponding axis, to reduce afterimages [61]. Then,

the uniform neutral gray background was displayed, and the subject was required to

respond whether the top or the bottom patch (xp or xq) was most similar to xα by

pressing the corresponding arrow key on the keyboard.

Figure 2: Experimental paradigm of the matching experiments. A: Two patches xp

and xq were presented on the right, surrounded by bβ . The observer had to report which

of the patches appeared most similar to the target stimulus xα on the left, which was

surrounded by bα. B: Sequence of chromaticities xp and xq appearing in response to the

choices of the subject. Horizontal axis: trial sequence. Vertical axis: coordinate S = x1

of each patch. Horizontal line: target color xα. The staircase sequence contained 6

trials, after which the final matched stimulus xβ was calculated as the average of x
p
6 and

x
q
6. C: Chromaticity xβ presented on surround xβ (gray line) that matched the target

xα presented on surround bα (green line). Different lines represent the converged

chromaticity obtained in each of the 10 sequences responded by observer S2.
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2.3.3 Staircase procedure

Experiment III was structured in sequences, one sequence defined as 6 consecutive

trials. In each trial, two patches with chromaticities xp and xq appeared surrounded by

bβ . The subject’s task was to select the patch that appeared to be most similar to the

target xα, surrounded by bα. The two options xp and xq were meant to be an upper

and a lower bound for the matched chromaticity xβ, and were updated progressively

throughout the trials of the sequence. In the first trial of the sequence, x
p
1 and x

q
1 took

the maximal and minimal values allowed by the display for the corresponding axis. For

instance, along the x1 = S axis, initially x
p
1 was a maximally saturated purple and x

q
1,

a maximally saturated yellow-green. At trial i, the subject decided whether x
p
i � bβ

or x
q
i � bβ was perceived as more similar to xα � bα. For trial i + 1, the non-selected

chromaticity at step i was updated by the midpoint between the two previous options,

that is,

x
p
i+1

= x
p
i − (1− zi)

x
p
i − x

q
i

2

x
q
i+1

= x
q
i + zi

x
p
i − x

q
i

2

where zi = 0 if the subject chose x
p
i , and zi = 1, otherwise. Both progressions of

chromaticities x
p
i and x

q
i were bounded and monotonic, and their distance decreased

exponentially, so they both converged to the same value xβ. We estimated this value as

(xp
6+x

q
6)/2, and interpreted as the color for which xβ �bβ matched xα �xα. We verified

that after 6 steps, the two bounds were indistinguishable.

In principle, the obtained xβ is not guaranteed to be an exact match. Still, the

choices of the subject that lead to xβ are those that minimize the perceptual distance,

so xβ is the stimulus that makes xβ � bβ as similar as possible to xα � bα, among the

available options. This argument is equivalent to the projection notion employed by

[54]. In our experiments, exact matches are only possible if the sequence of presented

colors actually approaches the target xβ. If xβ indeed lies along the explored axis, then

perfect matches become possible, except perhaps for small discrepancies produced by

the different position on the retina excited by the three compared stimuli. Instead, if the

target lies outside the explored axis, perfect matches are downright impossible. We ver-

ified that for each axis, the induction along the direction that is orthogonal to the tested

axis was indistinguishable from noise (data not shown). Therefore, in our paradigm,

all the options xp and xq available to the subject belonged to the same cardinal axis

connecting xα, bα and bβ .

2.4 The perceptual coordinates

Discrimination thresholds can be understood as the granularity with which the space

of colors is perceived. The underlying assumption is that the neural activities involved

in representing two colors separated by less than the threshold are not reliably different.

The size of thresholds, and their variation throughout color space, depend on the coor-

dinate system. In this paper, we report the experimental results in the cone contrast

coordinates x1 = S and x2 = L −M [21], maintaining the total luminance x3 = L +M

fixed, as done in previous studies [35]. Each color is represented as a column vector x

with components x1 and x2. Sect. 3.1 explains the connection between the perceived

color and the chromaticities of both stimulus and surround. In order to reveal the sym-

metries of color space, we use the measured thresholds to define a metric tensor J , and

the perceptual coordinates (x′

1, x
′

2) of each observer. In this section, we show how to

transform from the cone contrasts to the perceptual coordinates.
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The metric tensor J(x) of the space of colors must be symmetric and non-negative,

and it allows us to calculate scalar products (vα)tJ(x)vβ between vectors vα and vβ of

the tangent space at x. In a neighbourhood around x and for a certain coordinate chart

{xi}, vectors can be mapped to small displacements in the space through the flow of the

coordinate vector fields {êi =
∂

∂xi }. In our experiments, by expressing the chromaticity

of stimuli in a specific coordinate system, we select the chart we use in the space of

colors. For a stimulus that is close to x, we use the notation x + dx. For sufficiently

small displacements, the mapping between the chromaticities around x and the tangent

space at x allows us to interpret dx both as the change in chromaticity and the tangent

vector which generates the infinitesimal displacement from x to x+ dx.

The line element dℓmeasuring the distance between a given color x and the infinites-

imally displaced color x+ dx is

dℓ = d(x,x+ dx)

=
√

dxt J(x) dx (2.2)

=
√

J(x)11 (dx1)2 + 2 J(x)12 dx1 dx2 + J(x)22 (dx2)2,

where the superscript t represents vector transposition. Our aim is to find the tensor

J(x) that represents perceptual differences, that is, the one for which the distance dℓ

of Eq. 2.3 between two neighboring colors x and x + dx captures their behavioral dis-

criminability. If an observer is capable of particularly accurate discrimination between

x and a slightly displaced color along a direction ê, the discrimination threshold must

be particularly small in this direction. The smaller the threshold, the more sensitive the

observer.

To construct J(x), the discrimination threshold between color x and a displaced

color along the direction ê needs to be measured for every possible direction ê. Opera-

tionally, this means to move progressively away from x, in small steps that add up to ε,

along the direction ê, and to test whether the reached color x+ε ê can be discriminated

from x with a pre-set accuracy. If this is the case, then x and x+ εê are defined to be at

a fixed distance from each other. In this paper, we define the units of length by setting

this distance as equal to 1: A length of one unit in color space yields a threshold error

rate of 37.5% in Experiment I (Sect. 2.3.1). If the reached color is discriminated from

x with a larger error rate, the size of ε is increased, and the procedure is iterated until

the first color below the threshold is reached.

If thresholds are assumed to vary continuously with the direction ê, the lowest-order

analytical expression that captures their directional modulation is given by the equation

of an ellipse, obtained by setting the distance dℓ of Eq. 2.3 equal to 1 and squaring the

resulting equality. The vector (εê)t = (ε1, ε1) is therefore a solution of

(εê)t J(x) εê =
(

ε1 ε2
)

(

J11(x) J12(x)

J21(x) J22(x)

)(

ε1
ε2

)

= 1, (2.3)

which defines an ellipse because of the positive definiteness of J . The eigenvectors

of J(x) are aligned with the principal axes of the ellipse, and the eigenvalues are the

inverse square of their lengths. An ellipse centered at point x is determined by three

non-colinear points, or equivalently by the length of its semiaxes and its orientation.

Therefore, by measuring the discrimination thresholds along three directions, and using

Eq. 2.3, a system of three equations and three unkowns is obtained, the solution of

which are the components of the symmetric tensor J .

The length of a path connecting two remote colors is obtained by integrating local

increments dℓ along the trajectory, so the total length is the number of thresholds that

need to be crossed to travel from one color to the other. Of course, the metric tensor
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may vary along the path, and different paths connecting the same pair of points may

have different lengths. The distance is then defined as the length of the shortest path.

For practical reasons, J(x) cannot be estimated for the infinite collection of points x

composing the trajectory. In order to calculate the path integral, hence, J(x) must be

estimated for a subset of colors x that sample the curve under study with sufficient

resolution. The intermediate tensors are interpolated under the assumption that the

discrimination ability varies continuously between samples.

Under adaptation to the surround, the results of [37] indicated that, in the cone

contrast coordinates, the off-diagonal terms of J(x) vanish. In this case, thresholds

only need to be measured along the cardinal axes e1 and e2. Infinitesimal distances

along the axes then read

dℓi = d
(

x,x+ dxi e
i
)

=
√

Jii(x) (dxi)2

=
|dxi|

ε(ei)
, (2.4)

where the subscript i indicates either the S (i = 1) or the L−M (i = 2) coordinate. The

distance between two colors xa and xb = xa +∆ei that differ by a vector aligned with

the cardinal axes i is found by integration

d
(

xa,xb
)

=

∫ xb

xa

dℓ

=

∫ xb

xa

√

Jii(x) |dxi| (2.5)

If J(x) is diagonal, and in addition, the term Jii(x) only depends on the component xi

(as verified by [37]), the space of colors has zero curvature. In this case, a coordinate

transformation x → x′ exists, such that the transformed metric is Euclidean. In Eu-

clidean spaces, all geodesics are straight lines, which greatly simplifies the perceptual

shift produced by surrounds, as explained below. In the new coordinates, the discrim-

ination ability of the observer is isotropic and homogeneous, that is, all discrimination

ellipses become circles, and all circles have the same size. These are the coordinates

that most naturally reveal the perceptual abilities of the subject, and are therefore here

called the perceptual coordinates of the observer. It is easy to prove that the function

instantiating the transformation to the perceptual coordinates is

x′

1(x) = d
(

(x0
1, x

0
2)

t, (x1, x
0
2)

t
)

=

∫ x1

x0

1

√

J(y1, x0
2) dy1, (2.6)

x′

2(x) = d
(

(x0
1, x

0
2)

t, (x0
1, x2)

t
)

=

∫ x2

x0

2

√

J(x0
1, y2) dy2, (2.7)

where d(xp,xq) is the distance between colors xp and xq, and x0 is the origin of the

new system of coordinates (x′(x0) = 0) and may be chosen arbitrarily.

3 Results

3.1 Classes of equivalence in the space of stimuli × surrounds

In this section, we describe the mapping between external stimuli and percepts, with

special emphasis on the role of context. For the sake of simplicity, the only aspect of
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context that matters is chromaticity, all other aspects (as spatial or temporal structure)

are kept uniform. The color with which a stimulus is perceived depends on the spectral

properties of both the stimulus and the surround. Mathematically, this means that

Perceived color = Function[x, b], (3.1)

where x and b represent the stimulus and the surround, respectively. In trichromats,

three numbers suffice to characterize the perceivable properties of the light spectrum,

giving rise to the well-known 3-dimensional color spaces, such as LMS, RGB, XY Z, or

others. Equation 3.1 suggests that, in a center-surround situation with uniform center

and uniform surround, 6 coordinates are required to specify a percept, 3 for the color

of the stimulus and 3 for the surround.

Quite remarkably, although chromatic surrounds modify the way stimuli are per-

ceived, the percept they induce is still a color, since observers engage themselves

naturally in asymmetric matching experiments, where they match pairs of stimuli sur-

rounded by different chromaticities. This means that for each stimulus xα presented

against surround bα, and for each new surround bβ , a new stimulus xβ can be defined

by a function

xβ = Φbα
→bβ (xα), (3.2)

such that

xα � bα ∼ xβ � bβ .

In asymmetric matching experiments, observers compute the function Φbα→bβ . As first

noted by [47], the matching operation “∼” defines an equivalence relation, that is, a

relation between pairs of “stimulus � surround” that is reflexive (x�b ∼ x�b), symmetric

(if xα � bα ∼ xβ � bβ then xβ � bβ ∼ xα � bα), and transitive (if xα � bα ∼ xβ � bβ and

also xβ � bβ ∼ xγ � bγ , then xγ � bγ ∼ xα � bα). All equivalence relations induce a

partition in the set they operate upon. In other words, the set of pairs x � b can be

segmented into disjoint subsets, or classes of equivalence. All pairs belonging to the

same class are pairwise connected with the relation ∼, and also, pairs belonging to

different classes are not connected with ∼. In line with Resnikoff, here we assume that

a given color is the percept shared by all the pairs that belong to the same class. A color

is therefore not a property of a specific stimulus x, nor even of a specific pair x � b. It

is a property of a whole class of pairs. In mathematical terms, color is the quotient

space of the original space of pairs and the equivalence relation “∼”. Therefore, the 6

coordinates mentioned above constitute a redundant representation of color. Classes

of equivalence are 3-dimensional submanifolds embedded in the 6-dimensional space

defined by stimuli and surrounds. If selecting a color is equivalent to selecting a class, 3

coordinates suffice. In Fig. 3, the classes of equivalence are illustrated for four different

choices for the function defining the displacements induced by surrounds. Since it is not

possible to depict 3-dimensional submanifolds embedded inside a 6-dimensional space,

the figure shows slices containing the axes (x1, b1) and (x2, b2), respectively. In these

slices, each class appears as a curve. In Fig. 3A, the surround does not alter the color

of the stimulus, and therefore, the classes of equivalence are planar: Irrespective of the

surround, x � b is always perceived the same. In Fig. 3B, classes of equivalence are

linear. The surround produces a repulsive effect, which becomes larger as the distance

between the surround and the stimulus increases. In panels C and D, the effect of the

surround is more complex.

We now assume that, at least for the unsaturated colors explored in this paper, all

equivalence classes contain a unique uniform representative, that is, a pair of the form

x � x, in which the stimulus coincides with its surround. In Fig. 3, uniform repre-

sentatives lie along the white diagonal line, so the assumption means that all classes
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Figure 3: Classes of equivalence. Four different examples of the structure of the par-

tition induced by classes of equivalence. Black lines represent classes of equivalence,

and are obtained by plotting Φb(x) for fixed x (one value per line) and varying b. The

diagonal white line contains the uniform representatives. A: The surround does not

alter the color of the stimulus, so the classes of equivalence are planar (straight lines).

B: The surround induces a linear classes of equivalence, as suggested by [47] and [44].

C and D: Two other possible partitions of color space, with more complex classes of

equivalence.

intersect the diagonal. The hypothesis is supported by the empirical observation that

subjects find feasible the task of matching a uniform stimulus x � x of controlled chro-

maticity with a target stimulus x′ presented against a surround of different chromaticity

b′. In our lab, this feasibility has been verified for the set of target stimuli that can be

produced by our computer screen. Although this set does not include maximally satu-

rated colors, it is broad enough to encompass a rich collection of chromaticities. The

uniform representative of each class must be unique, since all the members of a class

are perceptually indistinguishable, and two uniform representatives of different chro-

maticity are (by definition of “different” ) distinguishable. We define the function Φb(x)

as the one that maps each member x � b of a given class to its uniform representative

x0 � x0, such that

x0 = Φb(x), ⇔ x � b ∼ x0 � x0. (3.3)

If, when shown on a fixed surround b, the stimuli xα and xβ are perceived as different,

then they necessarily belong to different classes, andΦb maps them to different uniform

representatives. Therefore, for fixed b, the function Φb(x) must be injective. Since x�b

and x0 � x0 belong to the same class, the functions Φb and Φbα→bβ
must obey the

relation

Φbα
→bβ = Φ

−1
bβ ◦Φbα , (3.4)

where the symbol ◦ represents function composition, so thatΦ−1
bβ

◦Φbα
(xα) ≡ Φ

−1
bβ

[Φbα
(xα)].

The injectivity of Φb guarantees that the inverse Φ
−1
b exists.

Uniform representatives remain unchanged by Φ, that is, Φx(x) = x, for all x. The
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Figure 4: Discrimination Ellipses when stimulus coincides with surrounds, measured

in (A):(S,L − M) coordinates, as reported by [37], and (B) perceptual coordinates, by

definition of the perceptual coordinates. If the surround has a chromaticity that differs

from that of the stimuli and is at origin, when including the induction effect produced

by a radial and isotropicΦb(x), the ellipses take a radial form in perceptual coordinates

(C), an effect that is conceptually similar to the one reported by [37].

uniqueness of uniform representatives implies that all the points along the diagonal

correspond to different classes, and that classes must cross the diagonal once and only

once.

3.2 A notion of distance in color space

From the above considerations, it follows that any notion of distance between col-

ors must be expressible as a notion of distance between classes of equivalence. That

is, distances are objects of the form d([xα � bα], [xβ � bβ ]), where the square brackets

[·] represent the class of the enclosed pair. In this section, we establish a mathemati-

cal relation between the sought distance and the function Φb defined in the previous

section. To simplify the notation, from now on we omit the square brackets, writing

d(xα � bα,xβ � bβ) to represent d([xα � bα], [xβ � bβ ]). Moreover, when the pairs are

uniform representatives, we write d(xα,xβ) to represent d([xα � xα], [xβ � xβ]). There-

fore, although each argument of the distance function may appear to be a pair, or even

a single chromaticity, readers should be aware that arguments are always classes. In

other words,

d(xα � bα,xβ � bβ) := d([xα � bα], [xβ � bβ ])

d(xα,xβ) := d([xα � xα], [xβ � xβ]).

If distances are properties of whole classes, then the distance between non-uniform

stimuli is equal to the distance between the corresponding representatives,

d(xα � bα,xβ � bβ) = d
(

Φbα(xα) � Φbα(xα),Φbβ (xβ) � Φbβ (xβ)
)

= d
(

Φbα(xα),Φbβ (xβ)
)

. (3.5)

Hence, if the distance between uniform representatives is known (along the white diag-

onal in Fig. 3), to calculate the distance between two pairs that do not both lie along the

diagonal, we must first slide them through their respective classes of equivalence until

they both hit the diagonal (in general, on different places), and then use the definition

of distance for uniform representatives.

Below we list the hypothesis under which we construct the geometry of color space.
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1. The manifold of percepts is Riemannian, so that the distance function d can be

written in terms of a metric tensor J . This hypothesis is implicit in Eqs. 2.3-2.7.

The Riemannian assumption was first introduced by [59] and [49], later discussed

by [52], [56], [47], and [17, 18], and is supported by the experimental observation

that discrimination thresholds conform an ellipse around the reference color [41,

37], so local distances can be approximated by a quadratic form (Fig. 4).

2. The metric tensor is decomposable as a direct sum in the isoluminant coordinates

x1 = S and x2 = L−M . This hypothesis is implicit in Eqs. 2.4-2.7, and yields

dℓ2 = J11(x1) dx
2
1 + J22(x2) dx

2
2. (3.6)

The assumption derives from the fact that discrimination ellipses, as shown by

[37], have principal axes that are parallel to the cardinal axes ê1 and ê2 (Fig. 4A).

Under this assumption, the space is flat, and a coordinate system exists (the per-

ceptual coordinates) in which the distance between uniform representatives is Eu-

clidean (Sect. 2.4). In this coordinate system, discrimination ellipses are circles,

and all have the same size (Fig. 4B).

3. The space of percepts is complete, so for any pair of points xα,xβ, a geodesic

γxα→xβ joining them exists such that d(xα,xβ) = length(γxα→xβ ). In particular, the

separability of the isoluminant plane implies that the lines defined by the cardinal

axes e1 and e2 are geodesics.

One of the central hypotheses of this paper is that, in the perceptual coordinates, the

effect of the surround has rotational symmetry. More precisely, the function Φb(x) is

assumed to comply with two other requirements:

4. The radial hypothesis: If xα � bα ∼ xβ � bβ , and xα, bα and bβ lie all on the

same cardinal axis (either ê1 or ê2), the matched chromaticity xβ also lies on the

same axis. Evidence for this symmetry is discussed in Experiment III. So far, this

hypothesis was formulated for the cardinal axis of the cone contrast coordinates.

To make the statement more general, we observe that the conjecture suggests that

the displacement produced by Φb(x) acts along the line connecting the stimulus

and the surround, such that for fixed b, the vector field of displacements induced

by Φb(x) is radial and centered in b. Graphically, in the vector fields of Fig. 5,

arrows are parallel to the line joining b and x. In Riemannian geometries, the

line connecting two points is generalized to a geodesic (Fig. 5A), so the precise

formulation of the radial hypothesis reads: For fixed b and viewed as a function

of x, the uniform representative Φb(x) lies along the geodesic γb→x that starts

from b and passes through x. Moreover, if t is an arc-length affine parameter for

γb→x(t), a scalar function t(x, b) exists, such that the uniform representative can

be written as Φb(x) = γb→x[t(x, b)].

5. Isotropy and homogeneity: Color space is assumed to contain no privileged stimuli

or directions, at least, when dealing with points that are far from the borders of

the gamut (stimuli that are maximally saturated). Evidence for this hypothesis

is provided by Experiments II and III. The core assumption is that the perceptual

shift produced by a surround b on a stimulus s only depends on the distance d(b,x),

that is, t(x, b) = t[d(x, b)]. The perceptual coordinates are defined so as to ensure

that equi-distant classes cross the diagonal in equi-distant points. Yet, from the

definition of perceptual coordinates alone, there is no restriction on the shape of

classes. The isotropy and homogeneity hypothesis implies that, when viewed in

the perceptual coordinates, all the classes have the same shape, and only differ

from one another in a rigid translation, as in all the examples of Fig. 3.
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Figure 5: Radially symmetric induction. A: Hypothesis 4 and 5 state that when

chromaticity x is surrounded by chromaticity b, the perceived sensation is chromatically

equal to that of a uniform representative that lies along the geodesic γb→x, displaced

from x in an amount t(d) − d. The space P contains all uniform representatives. In

this example, the surround exerts a repulsive effect, since the γb→x (t(d)) is longer

than γb→x(d). B-E: Four different examples of the shifts t(d) − d, corresponding to

the classes of equivalence of Fig. 3. B: t(d) = d (b1), and the vector field centered at

the surround (white disk) vanishes in all the points of color space (b2). C: t(d) ∝ d,

with a proportionality factor different from unity. The vector field is linear. For x = b

the surround does not alter the perceived stimulus, but otherwise, the effect is radial,

repulsive, and proportional to the distance between x and b. D: t(d) ∝ ln(1 + d/λ),

for some characteristic distance λ. The effect o f the surround is initially repulsive,

vanishes at d = λ, and then reverts to attractive. In E, t(d)− d ∝ [1− exp(−d/λ)], so the

displacement is always repulsive, and tends to a constant value for large distances.

In the perceptual coordinates, the metric tensor reduces to the unit matrix, so all

geodesics become straight lines, along which components can be summed and multi-

plied. In particular, the separability of the metric tensor (hypothesis 2) implies that the

lines along the cardinal axes ê1 and ê2 are geodesics. In the perceptual coordinates,

the mapping Φb(x) can be written as

Φb(x) = γb→x (t (d(x, b))) = b+ t (d(b,x)) û, with û =
x− b

d(b,x)
. (3.7)

That is, in these coordinates, the color shift induced by the surround is radial, it is
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centered at the surround b and is of magnitude t (d(x, b)) along the direction û that con-

nects b and x. Figure 4 C displays example discrimination ellipses for a fixed surround

when φb satisfies hypotheses 4 and 5.

If the surround exerts no influence (Fig. 3A) then Φb(x) = x, which necessarily

implies that t(d) = d.

The effect of the surround is taken to be repulsive if t(d) > d (the surround repels

the stimuli, so that the uniform representative of a given stimulus is further away from

the surround than the original stimulus), and attractive otherwise, that is, if t(d) < d.

3.3 Experiment I: Discrimination thresholds for B = T

Experiment I is used to find the perceptual coordinates of each observer, for which

the knowledge of the metric tensor J(x) is required (Eqs. 2.6 and 2.7). We work with

fixed luminosity, that is, L+M = const. [21].

[37] established that in the space (x1, x2) = (S,L − M) defined by the cone con-

trasts, discrimination thresholds are described by diagonal quadratic forms (hypothesis

2 above). Moreover, the elongation of the ellipses along the ê1 direction varied approx-

imately linearly with x1, and bared no significant dependence on x2. The elongation

along the ê2 direction was shown to be approximately constant. These results imply

that it suffices to sample the thresholds around colors x that lie along the cardinal axes,

testing displaced colors x + εI ê that also lie along the same axis. The colors x tested

here are displayed in Fig. 1C.

We now deduce how the diagonal terms Jii are obtained from the measured dis-

crimination thresholds. For each uniform representative x � x sampled along the i-th

coordinate axis (i ∈ {1, 2}), we determine the minimal displacement εI(x, ê
i) along the

same direction êi, so that x+ εI(x, ê
i)êi �x be first distinguishable from x�x. The sub-

index “I” in εI indicates a threshold obtained with Experiment I (a different threshold

is defined in Experiment II).

Defining the unit of distance in color space as that corresponding to the just notice-

able difference (Sect. 2.3.1), and making use of the assumption that distances derive

from a diagonal metric tensor J ,

1 = d
(

x � x,x+ εI(x, ê
i)êi � x

)

= d
(

x,Φx

(

x+ εI(x, ê
i)êi

)

)
)

= Length of the geodesic γ
(

t
(

d
(

x,x+ εI(x, ê
i)ê1

)))

= |t
(

d
(

x,x+ εI(x, ê
i)
))

|

≈ |t′(0)
√

Jii(x)εI(x, ê
i)| (3.8)

Two factors determine the length εI(x, ê
i) corresponding to the just noticeable differ-

ence: The metric J , and the derivative t′(0). The metric defines how distances are

quantified in each point of color space and along each direction, and appears in any

Riemmanian space. The derivative is a special ingredient that appears in the case of

Experiment I. Note that the metric is evaluated on the color x, so J(x) alone does not

contain information about the sliding operation that was required to take x+ εI(x, ê
i)êi

to its uniform representative Φx

(

x+ εI(x, ê
i)êi

)

� Φx

(

x+ εI(x, ê
i)êi

)

. The derivative

is precisely the factor that provides that information. Its numerical value may depend

on experimental conditions, as the size and geometry of the stimuli [43, 34], the stim-

ulation time window [51], etc . If the surround exerts no influence (horizontal classes

in Fig. 3A), then the derivative is equal to unity, since Φb(x) = x and t(d) = d. If the

surround exerts a repulsive effect, the derivative is larger than unity, since for small

distances t(d) ≈ t′(0)d. This case is illustrated in Fig. 3, where the contour lines have
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positive slope when crossing the diagonal. Repulsive surrounds increase the distance,

or equivalently, to reach the same perceptual distance, a smaller threshold suffices. An

attractive surround, instead, corresponds to t′(0) < 1.

Solving Eq. 3.8 for Jii,

Jii(x) =

[

1

t′(0) εI(x, êi)

]2

. (3.9)

This equation allows us to find the diagonal terms Jii from the thresholds εI(x, ê
i),

up to a multiplicative factor t′(0). Figures 6A and C show the measured thresholds.

Along the x1 axis, thresholds increased roughly linearly with x1, with some subject-to-

Figure 6: Discrimination thresholds when the target and the surround chro-

maticities coincide. A and C: Discrimination thresholds for the x1 (A) and x2 (C) cone

contrast coordinates. Different observers displayed in different colors. B and D: per-

ceptual coordinates x′

1/x
′

1
max

(B) and x′

2/x
′

2
max

(D) as a function of the cone contrasts.

The normalizing factors x′

i
max

are the maximal perceptual coordinate obtained for each

subject, and were used to scale the data in order to compare different observers, which

would otherwise produce perceptual coordinates spanning intervals of different lengths.

Insets: Deviations from the linear mapping. Each data point is obtained from the fit of

Eq. 2.1, and error bars are the expected errors of the fit. Parameters of the optimal fits

are given in Table 1. E: The measured thresholds represent the vertical displacement

between a pair x � x on the diagonal (yellow dot), and another pair sitting right above,

or just below, on a class of equivalence that is at perceptual distance 1 from that of x�x.

subject variability. Thresholds varied across subjects up to a factor of 3. Along the

x2 axis, thresholds showed a non monotonic behavior, with a minimum around x2 =

0, which corresponds to the reference gray. Although there was a certain subject-to-

subject variability, all observers showed evidence of the minimum. For each subject,
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the modulation of thresholds along this axis was significantly smaller than along the S

axis, with the maximal and minimal threshold of each observer differing in less than

50% of the minimal threshold. Hence, confirming the result of [37], thresholds along

the ê1 direction vary more pronouncedly than along the ê2 direction. Yet, our data

reveal that they do not remain strictly constant along the ê2 directions, since the mild

non-monotonic behavior was found to be significant.

The threshold εI(x, ê
i) was defined as the change in chromaticity required for a stim-

ulus to be discriminated from its surround in 62.5% of the trials (Sect. 2.3.1). In Fig. 6E,

this increment is the vertical displacement between a pair x � x on the diagonal, and

a point x+ εI(x, ê
i)êi � x sitting right above (or below) the former, on the equivalence

class at distance 1 from that of x � x. If Fig. 6E were depicted in cone coordinates

or in any other color space that had not been chosen to reflect perceptual distances,

different triplets of yellow dots along the diagonal would appear to span different ver-

tical heights, since the separation just-noticeable-different classes (classes at distance

1) can be arbitrary. Finding the perceptual coordinates is equivalent to finding a rep-

resentational system in which the vertical span of all triplets remain constant along

the diagonal. In these coordinates, the classes intersect the diagonal at equi-distant

intervals, as in Figs. 3 and 6E.

To define the perceptual coordinates along the axes ê1 and ê2, the square root of the

diagonal elements of the metric have to be integrated (Eq. 2.5). To this aim, an analytic

expression of J
1/2(x) is needed. We proposed a polynomial function

|t′(0)|
√

Jii(xi) =
1

εI(x, êi)
=

n
∑

j=0

αj x
j
i , (3.10)

and fitted the coefficients αj to the data. The order n of the polynomial was chosen as

the lowest that still accounted for the data with p-values above 0.01. Along the ê1 axis,

a straight line (n = 1) suffices, whereas the ê2 axis requires to go up to a quadratic

expression (n = 2). Table 1 of the Appendix contains the fitted parameters.

Along the ê1 direction, the variability of the coefficients fitted for different observers

indicated inter-individual differences, since a single set of coefficients αj could not

account for the metric tensor of different subjects. The p-value for the hypothesis that

a single α0 could be used for the 5 subjects was 10−8, and for a single α1 was 6 · 10−3.

Along the ê2 direction, the individual differences were significant in the constant (p-

value below 10−10) and linear coefficients (p-value 2 10−7), but not in the quadratic ones

(p-value = 0.68).

Once an analytic expression has been obtained for the diagonal elements of the

metric, the perceptual coordinates along the cardinal axes can be calculated by in-

tegration (Eqs. 2.6 and 2.7), except for the yet unknown factor |t′(0)|. In Figs. 6B

and D, the normalized perceptual coordinates x′

1 and x′

2 are shown as a function of

the corresponding cone contrasts x1 and x2. The insets display the deviation from a

linear mapping, together with the quadratic or cubic analytical expressions obtained

by integrating Eq. 3.10 (same parameters as in Table 1). Importantly for what fol-

lows, in the perceptual coordinates, the distance between two colors x′ and y′ is calcu-

lated with the Euclidean formula. If the two colors lie along the cardinal axis êi, then

d(x′êi, y′êi) = |x′

i − y′i|.

3.4 Experiment II: Discrimination Thresholds for B 6= T

Experiment II involved the same discrimination task as Experiment I, but with a

surround b that was different from the tested stimuli. Since the discrimination threshold

depends on the surround, we use the notation εII(x, b, ê
i). Experiment II reduces to

Experiment I when b = x, that is, εII(x,x, ê
i) ≡ εI(x, ê

i).
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In Experiment II,

1 = d
(

x � b,x+ εII(x, b, ê
i)êi � b

)

= d
(

Φb(x),Φb

(

x+ εII(x, b, ê
i)êi

))

, (3.11)

where the second line derives from the hypothesis that distances between two pairs

remain invariant if any of the pairs is replaced by another member of its own class, in

particular, the uniform representative. Since b, x and x + εII(x, b, ê
i)êi lie all three on

the same cardinal axis,

d
(

Φb(x),Φb

(

x+ εII(x, b, ê
i)êi

))

=
∣

∣d
(

Φb(x+ ε(x, b, êi)êi), b
)

− d (Φb(x), b)
∣

∣ .

Replacing this result in Eq. 3.11,

1 =
∣

∣t
(

d
(

x+ εII(x, b, ê
i)êi, b

))

− t (d(x, b))
∣

∣

≈
∣

∣

∣
t′ (d(x, b))

√

Jii(x)εII(x, b, ê
i)
∣

∣

∣
(3.12)

Since Jii is known from Experiment I, we can use Eq. 3.9 to get

εII(x, b, ê
i) = εI(x, ê

i)

∣

∣

∣

∣

t′(0)

t′[d(x, b)]

∣

∣

∣

∣

. (3.13)

In the perceptual coordinates, ε′I(x, ê
i) = 1, by definition. Therefore, if εII(x, b, ê

i) is

written in the perceptual coordinates and the isotropy and homogeneity hypotheses

hold, Eq. 3.13 implies that the thresholds in Experiment II depend only on the distance

between stimulus and surround, irrespective of the specific surround or cardinal axis.

In the perceptual coordinates, distances between stimuli belonging to the same cardinal

axis are simply equal to |x′

i − b′i|, so εII(x, b, ê
i) depends on its arguments only through

the combination |x′

i − b′i|.

When the surround coincides with the stimulus, we get εI = εII . As the surround

b is moved away from the stimulus x, the distance d(x, b) increases. The threshold εII
may then either increase or decrease, depending on whether the absolute value of the

slope of t(d) is larger or smaller than t′(0). Therefore, by measuring the thresholds

εII for different surrounds, the derivative of t(d) is revealed. Yet, this reasoning is

only valid if the isotropy and homogeneity hypothesis proposed above (number 5 in

Sect. 3.2) indeed holds, namely, the assumption that the perceptual shift induced by

the surround only depends on the distance d(x, b). Therefore, before characterizing

the shape of t(d), we first use Experiment II to assess the validity of this hypothesis.

To do so, we demonstrate that, in the perceptual coordinates, the dependence of the

thresholds εII(x, b, ê
i) with b and with x can be entirely written in terms of the distance

|x′

i − b′i|.

The first step is to describe the dependence of the thresholds on the surround in the

cone contrast coordinates. In Fig. 7, we see the variation of the thresholds from those

obtained in Experiment I of a given subject as a function of the difference xi − bi. As

reported by [37], the thresholds are minimal for b = x, and increase as the surround dif-

fers from the stimulus. This non-monotonic behavior refutes the hypothesis that classes

be linear functions of the stimulus, as proposed by [47]. It then becomes important to

characterize the variation. In Experiment II, the surround is always relatively close to

the stimulus, so an expansion of εII(x, b, ê
i) around b = x can be used to describe the

measured thresholds.

If, as assumed in this paper, the function t depends on the coordinates through the

distance d, the first-order of the Taylor expansion of t′ must include the term |xi − bi|.

Alternatively, if Hypotheses 4 and 5 do not hold, thresholds would be expected to vary
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smoothly with the coordinates, in which case, a polynomial would provide a reasonable

description of the dependence. We therefore compare two models containing the same

number of parameters:

Model 1 : εII(x, b, ê
i)− εI(b, ê

i) ≈ γ0 + γ1(xi − bi) + γ2(xi − bi)
2 (3.14)

Model 2 : εII(x, b, ê
i)− εI(b, ê

i) ≈ γ0 + γ1(xi − bi) + γ2|xi − bi| (3.15)

The first model assumes that εII(x, b, ê
i) has a continuous derivative at bi = xi, and is

able to describe the quadratic departure from linearity. The second model allows for

the possibility of a discontinuous derivative, and for the ascending and the descending

linear portions to have different slopes. It cannot, however, describe quadratic effects.

In Fig. 7, we compare the performance of the two proposals in fitting the measured

thresholds. The fitted coefficients γ0, γ1 and γ2 are reported in Tables 2 and 3 of the

Figure 7: Performance of models 1 and 2 in describing measured thresholds

εII(x, b, ê
i). Thresholds were measured for observer S2, and are shown as a function of

xi − bi. Data points are obtained from the fit of Eq. 2.1, and error bars are the expected

error of the fit. Red line: fitted model. A and C : Model 1 (Eq. 3.14). B and D : Model 2

(Eq. 3.15). A and B : Discrimination thresholds measured along ê1. C and D : Along ê2.

Appendix. The constant term γ0 is of the order of the experimental error of the mea-

surements, confirming that when the stimulus and the surround coincide, εII indeed

reduces to εI .

Each fit produces a χ2 value quantifying the goodness of the fit for each subject and

axis, and although there are small differences among conditions, the mean χ2-value

obtained for Model 2 (averaged across subjects and axes) is half the value obtained for

Model 1. Accordingly, the mean p-value obtained for the hypothesis that the data be

generated with Model 2 is twice as large as with Model 1. These results imply that the

data is better explained by Model 2, and a discontinuous derivative is to be expected at

MNA 1 (2021), paper 1.
Page 21/34

https://mna.episciences.org/

https://doi.org/10.46298/mna.7108
https://mna.episciences.org/


The geometry of color space

b = x. Moreover, the fact that γ1 is typically significantly different from zero indicates

that the ascending and the descending linear portions of Model 2 have different slopes.

To determine whether the hypothesis of homogeneity and isotropy is justified, we

now transform x, b and εII to the perceptual coordinates, using Eqs. 2.6 and 2.7 and

the metric tensor Jii obtained with Experiment I. We emphasize that no data of Exper-

iment II is used to fit the parameters of the transformation. Although we still lack the

multiplicative constant |t′(0)|, we can nevertheless assess whether, in these coordinates,

ε′II(x
′, b′, êi) indeed depends only on the difference |x′

i−b′i|. If it does, the transformation

should suffice to eliminate the asymmetry in the slopes of the descending and ascend-

ing portions of Model 2. Equivalently, when ε′II (measured for a single subject with

different stimuli x, surrounds b and axes êi) is plotted as a function of |x′

i − b′i|, a single

straight line should be seen. This plot is displayed in column A of Fig. 8, for surrounds

varying along the axis ê1 (top), ê2 (middle) and both axes together (bottom).

Figure 8: Assessment of the validity of hypothesis 5. Thresholds measured in Ex-

periment II for subject S1 as a function of the distance between the surround and the

stimulus. Circles: bi > xi. Squares: bi < xi. Each column represents a different

choice of the system of coordinates in which thresholds, stimuli and surround are rep-

resented. A: perceptual coordinates defined with the data of Experiment I. Columns B,

C, D: Other coordinates employed in the literature (see text), requiring no fitted param-

eters. Column E: Optimal coordinate system defined with a single fitted parameter. Top

row: b and x lie along axis ê1. Green: b = (x1, x2) = (0.16, 0), blue: b = (0, 0), orange:

b = (−0.24, 0). Middle row: axis ê2. Green: b = (0, 0), blue: b = (0,−0.03), orange:

b = (0, 0.03). Bottom: both axes together. Blue data points: ê1. Orange: ê2.

For comparison, we also show the same data points represented in other coordinate

systems, to test whether the linear relation between ε′II(x
′, b′, êi) with |x′

i − b′i| indeed

becomes more evident in the perceptual coordinates than in other coordinate systems.

In column B, the data are plotted in cone contrast coordinates. Clearly, the points

obtained for bi > xi (circles) define a different slope from that for bi < xi (squares).
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Moreover, the slopes along the axes ê1 and ê2 are markedly different (bottom row),

and so are the total ranges of the data. As a consequence, the amount of dispersion is

larger in the plots of column B than in column A. The χ2-values obtained from linear

fits in column B are more than three times larger than those in column 1, meaning that

the data are more in line with the Homogeneity and isotropy hypothesis when plotted

in the perceptual coordinates than in the cone contrasts.

In the cone contrast coordinate system, the origin x = 0 is gray by convention.

Columns C and D evaluate the performance of two additional coordinate systems, in

which cone contrast is determined with respect to the chromatic surround in which

the discrimination task was performed. Specifically, if the supra-index cc represents

cone contrasts, in column C, the coordinates of both the stimulus and the surround are

defined by the relation xnew
i = xcc

i /(bcci + 1), so that changes in stimuli are represented

by the relative contrast to the surround.

If εII depended only on the ratio xi/bi, Weber’s law [67] would hold. In column D, the

transformation is xnew
i = xcc

i /εI(b, ê
i)cc, so that the threshold of the surround always cor-

responds to unity. If εII depended only on the ratio εI(x, ê
i)/εI(b, ê

i), a modified version

of Weber’s law, formulated in terms of thresholds, would govern discriminability. The

resulting average χ2 values represent a three-fold (column C) and a two-fold (column

D) increase with respect to the first column. Thus, again, the perceptual coordinates

describe better the linear relation.

While the first four models assessed coordinate systems that contained no free pa-

rameters, the last column was constructed by searching for the value of a free coeffi-

cient α, obtained from a fit to the data, that produced the mapping xnew
i = xcc

i + α
2 (x

cc
i )2

with minimal χ2-value. The improvement, however, was only marginal, with a χ2-value

that was only 6% smaller than that for the first coordinate system. The perceptual co-

ordinates, hence, achieve almost the same performance as the ones of the last model

without parameters determined from the data of Experiment II.

In Fig. 6E, discrimination thresholds are represented as the vertical distance be-

tween yellow dots. We could add additional dots to the figure, thereby extending the

triplets to longer vertical sequences, unfolding both upwards and downwards, marking

consecutive classes that always lie at perceptual distance 1 from their neighbors. The

thresholds εII(x, b, ê
i) would be represented by the vertical separation of consecutive

dots. Linearly growing thresholds, as those of Fig. 8A, imply that classes become in-

creasingly separated as we depart from the diagonal. Yet, in Experiment II, the range

of colors was restricted by the gamut of the computer monitor, so the achievable chro-

matic difference between stimulus and surround was limited. Hence, the linear rela-

tion could only be confirmed for the limited range around the diagonal, where εII is

well approximated by a linear function of its arguments. When defining the perceptual

coordinates, we guaranteed that classes were equi-distant right on the diagonal. Yet,

beyond the diagonal, in principle distances could vary. Experiment II showed that the

separation εII(x, b, ê
i) depended only on the distance |x′

i−b′i|. Therefore, if the distance

|x′

i − b′i| is changed in a fixed amount, the separation is always the same, irrespective of

the individual values of x′

i and b′i. At least in some region around the diagonal, the lines

representing the classes are rigid translations one from each other. In this region, the

results of Experiment II support the isotropy and homogeneity hypothesis.

The linear dependency of εII(d) with d found in Experiment II restricts the set of

feasible functions t(d). For example, in the two upper panels of Fig. 6E, the separation

between consecutive lines is constant, so the results of Experiment II discard these two

options. The two lower panels correspond to cases in which εII(d) − 1 ∝ d, for small d.

Therefore, thus far, they both constitute possible candidate descriptions of the effect of

the surround on the classes of equivalence. We now compare these options.
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Let us first assume that the initial linear trend apparent in the data shown in Fig. 8

continues also for larger distances. This hypothesis implies that εII is proportional to

1 + λd(x, b). It then follows that t′(d)/t′(0) = (1 − λd)−1, which in turn yields t(d) =

t′(0) ln(1+λd)/λ. The resulting displacement t(d)− d is illustrated in panel d1 of Fig. 5.

The effect of the surround is initially repulsive, becomes neutral at an intermediate

distance in which t(d) = d, and reverts to attractive for even larger distances (see the

inversion of the arrows representing the vector field in panel c2 of Fig. 3). Actually,

t(d) can even become negative. This behavior challenges our intuition in several ways,

namely:

- Thresholds grow unbounded, implying that sufficiently distant surrounds preclude

the discrimination of stimuli altogether, no matter how different.

- The displacement induced by the surround grows indefinitely for large distances.

Therefore, the shifted color may differ from the presented one in an arbitrary

amount, by simply displacing the surround far enough.

- The effect inverts its polarity (from repulsive to attractive) as the distance grows.

The distance where the inversion takes place is singled out.

- Two different surrounds (one on each side of the neutral point) acting on the

same stimulus may induce the same apparent color, even though intermediate

surrounds produce different apparent colors.

- If the distance between the stimulus and the surround is sufficiently large, t(d)

vanishes. At that point, the stimulus becomes equal to the surround, producing a

spatially uniform percept. At even larger distances, the perceived stimulus is on

the negative side of the geodesic. In other words, a green stimulus surrounded by

red can give rise to a red percept that is even more saturated than the surround.

In order to avoid these bizarre effects, thresholds should deviate from the linear behav-

ior at large distances, decelerating. The simplest deviation from the linear hypothesis

would be for thresholds to saturate after the initial linear growth. Such saturation can

be modelled as εII(d) ∝ [1 + a exp(−d/λ)]−1, as in panel e1 of Fig. 5. The limited range

in which Experiment II was performed (Fig. 8) does not show strong evidence of satura-

tion. Yet, one can still test whether the thresholds of Fig. 8 can also be compatible with a

sublinear trend. To this end, we compared the hypotheses that t′(d) ∝ (1+ d/λ)−1 (com-

patible with linear thresholds) and t′(d) ∝ 1 + ae−d/λ (compatible with exponentially

saturating thresholds). Slightly smaller χ2 values were obtained for the exponential

model. Even though the improvement in the fit of Experiment II was only marginal, in

the next section we describe Experiment III with the exponentially saturating model,

thereby avoiding the unrealistic effects described above.

3.5 Experiment III: Asymmetric matching task

In the asymmetric matching task (Sect. 2.3.2), for each stimulus-surround pair xα �

bα and surround bβ the task of the observer was to find the stimulus xβ that fulfills

xα � bα ∼ xβ � bβ , in other words, to report xβ = Φbα→bβ (xα).

Equation 3.3 implies that this condition is equivalent to

Φbβ (xβ) = Φbα(xα). (3.16)

In the following, all calculations are performed in the perceptual coordinates, but the

prime symbols will be omitted to avoid cumbersome notation. If the stimulus and the

surround are both on the same cardinal axis êi, Eq. 3.7 yields

Φb(x)|i = γ (t (d(x, b)))i = bi + t[d(x, b)] Sgn[xi − bi]. (3.17)
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If this condition is inserted in Eq. 3.16,

bβi + t[d(xβ , bβ)] Sgn[xβ
i − bβi ] = bαi + t[dα(x, bα)] Sgn[xα

i − bαi ].

In the perceptual coordinates, d(x, b) = |xi − bi|. Using this equality, and a few algebraic

manipulations,

∣

∣

∣

[

t(dβ)− dβ
]

− [t(dα)− dα] Sgn[xα
i − bαi ] Sgn[x

β
i − bβi ]

∣

∣

∣
=

∣

∣

∣
xα
i − xβ

i

∣

∣

∣
(3.18)

Therefore, the perceptual shift
∣

∣

∣
xβ
i − xα

i

∣

∣

∣
induced by the two surrounds only depends on

the distances dα = d(xα, bα) and dβ = d(xβ , bβ) between each stimulus and its surround:

As long as dα and dβ remain constant, the shifts depend on none of the individual values

xα
i , x

β
i , b

α
i or bβi , nor on the direction êi. As a consequence, if shifts are plotted as a

function of dα and dβ , the set of data points should define a 2-dimensional manifold,

no matter how many stimuli, surrounds and cardinal axes be included. Moreover, the

2-dimensional structure should only be evident in the perceptual coordinates, since in

any other coordinate system, d 6= |xi − bi|, implying that Eq. 3.18 does not hold. In

Fig. 9, the obtained graphs are displayed. Along each coordinate axes, the shifts define

Figure 9: Perceptual shifts induced by surrounds. Shifts as a function of the dis-

tances dα = |xα
i − bαi | and ±dβ = ±|xβ

i − bβi |, for observer S3, along the axis ê1 (top), ê2

(middle) and both together (bottom), in cone contrast coordinates (left) and perceptual

coordinates (right). The factor ±1 multiplying dβ is defined by the product of Sign func-

tions in Eq. 3.18. The measured data points appear in the top and middle panels, and

the surface interpolates the measured values. In the lower panels, the two sheets are

shown to coalesce in the perceptual coordinates, but not in the cone contrast.

a 2-dimensional manifold, both in the cone contrast and the perceptual coordinates.

If both axes are mixed, however, in the perceptual coordinates the collection of data

points still lie on a 2-dimensional manifold, since the two sheets corresponding to the

different axes coalesce. This is not the case in the cone contrast coordinates, since the

sheet corresponding to ê2 is significantly closer to the origin than that of ê1. To quantify
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this difference, we estimated the dimension D of the manifold containing the data [27],

obtaining D = 2.11 in the perceptual coordinates, and D = 3.19 in the cone contrast

coordinates.

In order to test whether the exponential model provided a good description of the

results of Experiment III, for each human observer we simulated a computational agent

performing the same forced choice task. The agent decided in each trial which of the

two candidate stimuli was most similar to the target, and did so according to their own

idiosyncratic metric, as determined in Experiment I. This metric was used to represent

the experiment in the perceptual coordinates. In these coordinates, the effect of the

surround was modeled as Φb(x)|i = xi + κ Sign(xi − bi) [1 − exp(−|xi − bi|/λ)]. This

functional form gives rise to an initial linear growth of ǫII(d), and an exponential sat-

uration for long distances. For each target color xα presented on a surround bα and

two candidate chromaticities xp and xq on the surround bβ , the agent had to decide

whether d[Φbα(xα),Φbβ (xp)] was larger or smaller than d[Φbα(xα),Φbβ (xq)]. Guided by

the choices of the agent, the iterative procedure of the experiment produced the final

xβ = Φbα
→bβ (xα). Since significant amounts of trial-to-trial variability were observed in

the responses (Fig. 6), additive Gaussian noise, with zero mean and a variance fitted for

each subject, was included in the evaluation of the distances d[Φbα(xα),Φbβ (xp)] and

d[Φbα(xα),Φbβ (xq)] computed by the simulated observers. The simulated responses

were therefore also stochastic. The functional form proposed for t(d) contains two free

parameters, κ and λ. The fitting procedure was implemented with the python package

noisyopt [[55], [42]], which handles noisy functions. A single exponential function and

a single noise variance was fitted for each observer, for the three different pairs of sur-

rounds on each axis, and for both axes. Figure 10 displays the resulting xβ values as

a function of the target xα for subject S3, on four different pairs of surrounds, two for

each axis. Simulated matches may sometimes appear to be discontinuous (for example

first data point in Fig. 10C). This behavior derives from the staircase procedure em-

ployed to approach the matched stimulus, since for some test chromaticities, neither

the human nor the simulated subjects can select chromaticities that (in their subjective

experience) are shifted by the induction of the surround outside the two offered options.

The shift induced by the surround becomes significant in the interval of target xα val-

ues in which the push/pull produced by one of the surrounds is not compensated by

the other, that is, where the green and orange lines differ. The simulations reproduced

qualitatively the measured data.

4 Discussion

This paper constructs a notion of distance from a Riemannian geometry in a per-

ceptual space, such that the symmetries governing the mapping of sensory stimuli to

percepts are most simply revealed. It does so in color space, as an example of a percep-

tual space in which the discriminability of neighboring stimuli does not depend linearly

on notions of distance defined in terms of simple quantities derived from the physi-

cal stimulus. Our work embraces the conceptual framework first introduced by [47],

and recently reviewed by [44], in which color is understood as a property of classes of

equivalence in the space of stimulus-surround pairs. This framework was based on the

observation that colored surrounds modify the appearance of chromatic stimuli. Our

starting point was the assumption that, far away from the borders of color space, the

perceptual effect of a given surround on a given stimulus is governed by a universal law.

Here, “universal” means that a notion of distance d between classes exists, such that

Φb(x) = γb→x{t[d(x, b)]}, (4.1)
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Figure 10: Comparison between the measured and simulated data in Experiment

III. Matched chromaticity xβ as a function of the target chromaticity xα (both axes in the

perceptual coordinates) for observer S3. A and B: Asymmetric matching along the axis

ê1. C and D: Asymmetric matching along the axis ê2. In the cone contrast coordinates,

the two surrounds were bα = (−0.35, 0) and bβ = (0.25, 0) (A), bα = (0, 0) and bβ = (0.9, 0)

(B); bα = (0, 0) and bβ = (0,−0.2) (C), bα = (0,−0.03) and bβ = (0, 0.03) (D). Red circles:

experimental data. Violet line: Simulated results. Shaded areas: standard deviation

of the simulated results. Blue dotted line: identity function, expected in the case in

which the surround exerts no influence. Green and orange lines: mappingsΦbα(xα) and

Φbβ(xα) obtained from the fitted values of κ and λ of observer S3, indicating the uniform

representatives of xα�bα and xα�bβ , respectively. The perceptual shift induced by the

surround becomes relevant in the interval of xα values for which the two shifts (green

and orange curves) are unequal, thereby producing a net unbalance.

where γb→x is the geodesic connecting b and x obtained from the postulated distance,

and t is some function that we still need to specify. Equation 4.1 is a strong assumption.

If no symmetries are assumed, Φb(x) can be any transformation R3 × R3 → R
3. Once

Eq. 4.1 is imposed, the characterization of Φb(x) reduces to determining the function

t : R+ → R
+, which is a much simpler object. If, in addition, the postulated distance

derives from a metric tensor with zero curvature, then a system of coordinates exists,

here called the perceptual coordinates, in which the perceptual distance is Euclidean.

In this coordinate system, all the classes of equivalence have the same shape, and

only differ from one another by a rigid translation. The freedom in the shape of t(d)

implies that there is freedom in the shape of a single class. Yet, once the manifold

corresponding to a single class is known, all others are known too.

In this paper, we tested the hypothesis that the notion of distance required to model

chromatic induction through Eq. 4.1 also governed the similarity of chromatic stimuli

in terms of discrimination thresholds. If a single notion of distance is involved in a
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variety of experiments, one may suspect that the space of colors indeed possesses a

natural geometry, accessible by many - if not all - the computations implicated in the

transformation from input stimuli into behavioral responses. It therefore makes sense

to study the geometry of color space, because such geometry is not idiosyncratic to

specific tasks: It remains invariant throughout a variety of paradigms. The invariance

suggests that the geometry is more a property of the phenomenal experience of color

per se, and not of the requested behavior.

Previous work [37, 17, 18] had demonstrated that, when color was represented in

the cone contrast coordinates, the principal axes of the discriminationcontain ellipsoids

were aligned with the coordinate axes. In these coordinates, the metric tensor is de-

composable as a direct sum and therefore, has zero curvature. It should be mentioned,

however, that other previous studies exist in which the curvature was assumed to be

negative, or to change sign throughout color space. For example [47], who was later

followed by [39] and [26], had theoretical reasons to consider the hypothesis of an hy-

perbolic geometry. His theory was based on the premise that the space of colors had to

be homogeneous with respect to the general linear group of transformations, a conjec-

ture that inspired additional studies [9, 8, 10, 11]. Resnikoff’s mathematical analysis

demonstrated that, as a consequence, the classes of equivalence are forced to be linear,

that is, subspaces of the 6-dimensional space of stimuli × surrounds, as sketched in

Fig. 6B. Those classes permit only two geometries: hyperbolic (negative curvature) and

flat (null curvature). Yet, Resnikoff’s conjecture still needed experimental verification.

Linear classes predict constant thresholds for Experiment II, which are clearly refuted

by Figs. 7 and 8. They also predict a linear matching function for Experiment III, which

is refuted by Fig. 10. Our experiments, hence, rebut the homogeneity hypothesis pro-

posed by Resnikoff, thereby responding to the query raised by [44] and [45]. Yet, our

proposal can be understood as a generalization of Resnikoff’s ideas. His homogeneity

hypothesis claimed the space of colors to have a specific symmetry, that allowed him

to drastically reduce the range of possible structures that the space could be endowed

with. We have disproved the linear structure, thereby rejecting his specific choice of

symmetry. Yet, we still claim the induction to take the simplest form that is compat-

ible with the metric determined by discrimination experiments, which is to be radial,

isotropic and homogeneous.

Two other studies [52, 36] considered other types of curvatures. By interpolating the

discrete set of points measured by [40] with continuous quadratic forms, they derived a

metric whose curvatures changed sign throughout color space. The curvature tensor is

obtained from the second derivatives of the metric, which in turn, depends on the fitted

ellipses. We have verified that a small amount of variability in the measured ellipses

easily modifies the sign of the curvature (data not shown), although their absolute val-

ues typically remain small. In this context, we have here used as a starting point the

ellipses measured by [37], which are compatible with a vanishing curvature tensor, as

also argued theoretically by [18]. This premise can be taken as an approximation that

holds in the vicinity of the reference gray used in our experiments. We remain open to

the existence of a small, non-vanishing curvature that may be confirmed by future, more

precise experiments, particularly if the exploration of the space of colors is extended to

include more saturated stimuli.

The curvature is an invariant property that does not depend on the coordinates.

Hence, the hypothesis of vanishing curvature implies that the perceptual coordinates

exist. Importantly, in this paper we concluded that the transformation yielding the per-

ceptual coordinates was significantly different for different observers, implying that no

unique coordinate system exists that is perceptually uniform for all trichromats. This

finding is in line with the subject-to-subject variability obtained in theoretical [17] and
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experimental [66, 64] studies of discrimination tasks, the population variability in color

matching experiments [57, 66, 1, 24, 25, 4, 3, 19], and experimental studies on chro-

matic memory [20]. It is also consistent with the recurrently failed attempts to define a

unique coordinate system perceived as perceptually uniform by all observers.

The metric was defined from discrimination thresholds measured around the uni-

form condition (Experiment I). In order to verify whether the homogeneity and isotropy

hypotheses entailed in Eq. 4.1 hold, we performed Experiments II and III, and described

them in terms of the metric obtained from Experiment I, with no fitted parameters. The

last two experiments, however, required in addition the function t(d).

Experiment II was restricted to regions of color space in which x remained fairly

close to b, due to the limited range of colors that can be produced by a computer mon-

itor. Since thresholds grow as the chromatic distance between stimulus and surround

increases, the range of discrimination experiments that can be performed with contrast-

ing surrounds is limited. Therefore, only the first order Taylor expansion of t(d) could

be obtained from Experiment II. That first order confirmed that thresholds did not re-

main constant when the distance between stimulus and surround was varied, thereby

contradicting Resnikoff’s conjecture of linear classes. In addition, the validity of Eq. 4.1

was corroborated (Fig. 8).

The limited range explored by Experiment II was overcome by Experiment III, in

which a perceptual match, instead of a discrimination, was required from the observer.

The larger range of explored distances implies that now the full t(d) is required to

describe the experiment. Once the hypothesis of constant thresholds is discarded, the

one that follows in simplicity assumes that thresholds grow linearly with d. Yet, this

assumption implies that t(d) grows in a logarithmic manner, which means that the shift

t(d)−d produced by the surround changes sign, a behavior that is counterintuitive. The

simplest next alternative is that after an initial linear trend, thresholds decelerate, and

do so sufficiently fast so as to force the perceptual shift t(d) − d to converge towards

a constant value for large distances. One simple way to model this behavior is with

thresholds that approach exponentially an upper bound. This model again confirmed

the validity of Eq. 4.1 (Fig. 9 ) and was able to reproduce the temporal sequence of

choices of subjects, as illustrated in Fig. 10.

The universality entailed in Eq. 4.1 suggests that the same mechanism by which

surround b1 modifies the color of stimulus x1 is active when surround b2 modifies the

color of stimulus x2. This mechanism is likely to be implemented by lateral or con-

vergent feedforward connections underlying modulatory interactions in visual neurons

[68, 48, 62] and may be the same mechanism underlying perceptual shifts in different

modalities [35]. If a single physiological mechanism is responsible for the induction ob-

served in different regions of color space, then the perceptual coordinates are probably

the substrate upon which the synaptic processes instantiating induction operate. This

hypothesis would imply that the perceptual coordinates represent signals that actually

exist in the brain, and not just a mathematical construct.

The conclusions supported by our experiments can only be claimed to hold far away

from the borders of color space, since this is the region that could be tested with our

computer monitor. Color space is confined into a cone included inside the positive

portion of the 3-dimensional SML space, the borders of which are the maximally sat-

urated colors. These colors cannot be generated with broadband stimuli as produced

by computer displays. The existence of a border in color space blatantly contradicts

the homogeneity hypothesis. We therefore take special care to limit the validity of our

results, since color space cannot be homogeneous near its borders. As a consequence,

the exponential model for the repulsive effect produced by surrounds cannot hold near

maximally saturated stimuli, since it would push the color outside the boundaries of
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the space. Maybe, close to the borders, chromatic induction diminishes. Physiologi-

cally, this would mean that when color-representing neurons are firing within a certain

specific range (probably their maximal rates) the synaptic mechanisms mediating the

chromatic induction produced by surrounds becomes negligible. Another possibility

is that chromatic induction remains constant, but that the metric becomes singular

near the borders. If thresholds tend to zero sufficiently fast as we approach saturated

colors, in perceptual coordinates the border of color space would be pushed away to

infinity. A third alternative would be that chromatic induction still holds at the border,

so that colors are indeed pushed outside the space generated by uniform representa-

tives. This would imply that the assumption that all classes of equivalence contain a

uniform representative breaks down at the borders of color space, and the most sat-

urated colors from the perceptual point of view always correspond to non-matching

stimulus and surround. This would be compatible with the claimed existence of the so

called chimerical/hyperbolic colors [13]. New experiments with saturated colors are

required to differentiate these alternatives.

We conclude that the space of colors can be endowed with a notion of distance and

a system of coordinates that transparently reveal the symmetry of perceptual effects.

The notion of distance stems from discrimination experiments in which just-noticeable

differences are used to define the metric tensor. We hope these results motivate similar

attempts in other perceptual spaces and other sensory modalities, so that the generality

of these results can be assessed.

Supplementary Material

Experimental data availability. Experimental data can be found at https://doi.org/

10.12751/g-node.cwbvw6.

Appendix. Tables with fitted parameters and tests of goodness of the fitted curves

among the article.

Table 1: Parameters of the linear and quadratic fits of x′

i(xi). The reported p-values

represent the probability that data as extreme as the ones obtained in the experiment

be generated with the fitted model.
J11 J22

Sub. α0 α1 p-value Sub. α0(.10
2) α1(.10

2) α2(.10
3) p-value

S1 51± 3 −47± 8 0.9962 S1 2.14 ± 0.13 −2.0± 0.4 −1.7± 0.8 0.8826

S2 39± 3 −33± 6 0.9995 S2 3.4± 0.2 −0.55± 0.35 −1.7± 0.8 0.9991

S3 36± 2 −42± 7 0.9933 S3 1.85 ± 0.08 −2.9± 0.3 −0.94± 0.44 0.4808

S4 38± 3 −24± 7 0.2271 S6 1.72 ± 0.08 −1.1± 0.2 −1.7± 0.5 0.5026

S5 31± 2 −17± 6 0.6555 S7 1.89 ± 0.14 −2.2± 0.4 −2.0± 0.8 0.9901

Table 2: Fitted coefficients for Models 1 and 2 (Eqs. 3.14 and 3.15) for all measured

subjects along the axis ê1.

Model 1 Model 2

γ0 γ1 γ2 γ0 γ1 γ2

S1 0.014± 0.004 0.058 ± 0.01 0.21± 0.04 0.001± 0.005 0.13± 0.02 0.053 ± 0.01

S2 0.0034 ± 0.002 0.032± 0.009 0.24± 0.02 −0.015 ± 0.003 0.18± 0.01 0.046 ± 0.009

S3 0.0071 ± 0.004 0.047 ± 0.01 0.11± 0.03 −0.0043± 0.005 0.087 ± 0.02 0.043 ± 0.009

S4 0.0075 ± 0.003 0.019 ± 0.01 0.23± 0.03 −0.0036± 0.004 0.13± 0.02 0.012 ± 0.01

S5 0.0075 ± 0.003 0.055 ± 0.01 0.33± 0.03 −0.012 ± 0.004 0.2± 0.02 0.054 ± 0.01
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Table 3: Fitted coefficients for Models 1 and 2 (Eqs. 3.14 and 3.15) for all measured

subjects along the axis ê2.

Model 1 Model 2

γ0 γ1 γ2 γ0 γ1 γ2

S1 0.0031 ± 0.0008 0.018± 0.02 0.73± 0.1 7.3e− 06 ± 0.001 0.13 ± 0.02 0.018± 0.01

S2 0.0028 ± 0.0003 0.02± 0.007 0.8± 0.07 −0.00015 ± 0.0004 0.13 ± 0.01 0.02± 0.007

S3 0.0022 ± 0.0007 0.024 ± 0.009 0.69 ± 0.09 −0.0011± 0.001 0.12 ± 0.01 0.02± 0.009

S6 0.0096 ± 0.002 0.051± 0.02 1± 0.2 0.0037 ± 0.002 0.19 ± 0.03 0.039± 0.02

S7 0.0024 ± 0.0004 0.048 ± 0.008 1± 0.08 −0.0013 ± 0.0006 0.16 ± 0.01 0.047 ± 0.008
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