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Abstract

Mathematical modelling of the macroscopic electrical activity of the brain is highly non-
trivial and requires a detailed understanding of not only the associated mathematical
techniques, but also the underlying physiology and anatomy. Neural field theory is a
population-level approach to modelling the non-linear dynamics of large populations of
neurons, while maintaining a degree of mathematical tractability. This class of models
provides a solid theoretical perspective on fundamental processes of neural tissue such
as state transitions between different brain activities as observed during epilepsy or
sleep. Various anatomical, physiological, and mathematical assumptions are essential
for deriving a minimal set of equations that strike a balance between biophysical
realism and mathematical tractability. However, these assumptions are not always
made explicit throughout the literature. Even though neural field models (NFMs)
first appeared in the literature in the early 1970’s, the relationships between them
have not been systematically addressed. This may partially be explained by the fact
that the inter-dependencies between these models are often implicit and non-trivial.
Herein we provide a review of key stages of the history and development of neural
field theory and contemporary uses of this branch of mathematical neuroscience.
First, the principles of the theory are summarised throughout a discussion of the
pioneering models by Wilson and Cowan, Amari and Nunez. Upon thorough review of
these models, we then present a unified mathematical framework in which all neural
field models can be derived by applying different assumptions. We then use this
framework to i) derive contemporary models by Robinson, Jansen and Rit, Wendling,
Liley, and Steyn-Ross, and ii) make explicit the many significant inherited assumptions
that exist in the current literature. This framework ensures that the validity of these
assumptions will be carefully considered when interpreting results derived from NFMs
and also in light of further developments in mathematical modelling, neurophysiology
and neuroanatomy that enable these assumptions to be updated. We then provide
an overview of key application areas of neural field theory and critically examine the
limitations inherent in this class of models. Finally, we will discuss several avenues
that may be able to address these limitations, including novel methods from stochastic
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processes, random neural networks, networked dynamical systems, and ensemble
methods that connect the dynamics from the microscale to the macroscale.
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1 Overview

The use of mathematics to understand fundamental principles in neuroscience can
be traced back to the early 20th century. In 1907, Lapicque [120] introduced what
could be termed the first mathematical model of the neuron. Using a set of ODEs for
the RC circuit, this approach is an early precursor of many subsequent mathematical
studies. Building on advances in experimental methods for isolating neurons in vitro and
recording electrophysiological activity, the seminal work of Hodgkin and Huxley [87]
introduced a non-linear dynamical systems model to describe the membrane dynamics
of a single neuron. Soon thereafter, Beurle [12] formulated the first population model of
neural tissue. Building from here and inspired by statistical distributions of interacting
particles (Reichl [170]), the neural field approximation permits a focus on averaged
properties of the neuronal ensemble, rather than the effect of each individual neuron on
all of the others (Deco et al. [48]). Effectively, these so-called neural field models relate
the average pre-synaptic firing rates to the average post-synaptic membrane potentials
of neural populations. Over the past several decades, large-scale brain modelling has
continued to mature and proliferate, providing theoretical frameworks to study open
questions in neurobiology.

One of the primary purposes of this review is to provide a unifying mathematical
framework for deriving and explaining neural field models. To achieve this, we first
summarise important concepts of neurobiology and give a brief summary of single-neuron
models that underpin a “bottom-up” approach to modelling brain dynamics. We then
introduce ensemble approaches to modelling brain activity, and the underlying concepts
of neural field models. Alongside, an historical summary of the field, we explicitly derive
the Wilson-Cowan model, the Amari model, and the Jansen-Rit model, focussing on
the assumptions and formalisms used in these “first-order” models. We then consider
“second-order” models which stratify the state variables, enabling a more detailed
description of the aggregate interaction of multiple neural populations. From a general
integral equation description, we use Green’s functions to decouple the spatial and
temporal components and derive the cortical model described by Robinson et al. [178].
Using state-dependent input coefficients on the state variables (i.e. conductance-based
synapses), the cortical model of Liley et al. [124] is derived. Finally replacing the spatial
kernel with a point source: reducing the neural field to a neural mass, we demonstrate
how the Jansen and Rit [91] and Wendling et al. [214] models can be derived. In all cases,
significant assumptions are made by these authors which we highlight and discuss their
justifications in detail. The assumptions made typically take the form of mathematical
approximations and physiological and anatomical simplifications.

Following these historical reviews and unifying derivations, we turn our focus to sum-
marise the background of brain activity measurements using electroencephalography
(EEG) and how this is used to inform neural field models. Contemporary applications of
neural field theory are then discussed, including studies on the emergence of rhythms
in brain activity, sleep cycles, epilepsy and recurrent seizure activity, the action of
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anaesthesia on brain rhythms, and the progression of Alzheimer’s disease. Upon re-
view of these important applications, we examine the issues with neural field models,
specifically the myriad of assumptions on connectivity, the phenomenological nature
of these models, and the experimental validity of these theories. We end our review
by highlighting areas in which improvements in neural field theory can be made and
focus on unaddressed issues between neuroscience and mathematics and the role of
neural field theory. Throughout the review, it is assumed that the reader is familiar with
differential equations, integral equations, Green’s functions, integral transforms, and
dynamical systems.

2 Mathematical approaches to modelling emergent brain activity

Mathematical modelling provides an essential method of quantifying the behaviour
of complex biological systems, which can be utilised when developing or refining our
understanding of the anatomy and physiology of neural systems. This is achieved
by proposing and verifying new hypotheses, identifying important mechanisms and
parameters, and making predictions based on experimental data. Advancements in
accuracy and resolution of experimental measurements of microscale neural activity
have led to quantitative mathematical models, such as the Hodgkin-Huxley model,
that characterise the signalling processes between neurons from a dynamical systems
perspective. Macroscale neural activity however, provides many significant challenges in
both measuring and modelling. Small sections of brain tissue typically have a high density
of neurons — which themselves are highly complex units, that are coupled together
in irregular and non-uniform structures. These challenges require innovative methods
for quantifying emergent dynamics of neural populations that reduce the complexity of
the system to key parameters, which in turn can be measured using techniques from
experimental neuroscience.

From a dynamical systems perspective, there are two main approaches to con-
structing a mathematical model of the brain: the first is a ‘bottom-up approach’ where
evolution equations are based upon averaged physiological properties of the individual
neurons. The second is a ‘top-down approach’ where evolution equations are defined
based upon direct observations of the emergent behaviour of neuronal populations. The
sheer number of neurons involved in the generation of macroscopic electrical activity
along with the anisotropic and heterogeneous non-local connectivity of neurons makes
a ‘bottom-up’ approach highly non-trivial and largely impractical for modelling brain
dynamics from single neuron dynamics. To this end, a ‘top-down’ approach may be
better suited for understanding which key population-level physiological parameters
influence macroscopic dynamics. For both these approaches a critical challenge is to
relate and bridge the descriptions of neural activity at different spatiotemporal scales.
Multiscale neural activity is often temporally separated by several orders of magnitude
i.e., milliseconds versus hour timescales). Similarly, for different spatial scales the con-
nection between electro-chemical activities at the micro-metre scale is vastly different to
activity at the centimetre scale. The relationship between neural activities at different
spatiotemporal scales remains an open topic of research within both theoretical and
experimental neuroscience.

In this section we first provide the necessary neurophysiological background for
constructing neural field models from microscopic neural activity. A summary of the mi-
croscopic dynamics of individual neurons is given along with a discussion of macroscale
dynamics of the brain. The issues inherent in a “bottom-up” perspective, which seeks
to construct macroscale models by coupling together microscale models of individual
neurons is then discussed. We then provide an overview of the alternate “top-down”
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modelling approach utilised in neural field modelling. This top-down approach is the
primary focus of this review, for which we provide a detailed discussion of the key math-
ematical machinery involved. In this review we explicitly specify the assumptions made
in these models. As with most mathematical models, many assumptions are inherited,
and therefore implicit, over many iterations and applications of the model. We have
categorised these assumptions into three main types:

• Mathematical assumption: Where a substitution of an equation or expression
has been made that is believed to be a reasonable qualitative and/or quantitative
approximation and/or description of the physical system being described.

• Physiological assumption: A simplification of physiological function, usually of
neurons and synapses. There are many aspects of the structure-function relation-
ship of brain constituents and neurons that are either unknown or not quantitatively
measurable.

• Anatomical assumption: A simplification of the anatomical structure of the
brain, usually with respect to connectivity. There are many properties of neural
connectivity that are not covered by quantitative neuroanatomy, and these are
often simplified to a qualitative conjecture or estimate.

2.1 Physiology of the brain

At the microscale, the fundamental cells of the brain are neurons and glia. Both are
specialised cells that transmit signals using electrochemical mechanisms. Although glia
play a role in neural information processing (Ransom and Sontheimer [169], Araque and
Navarrete [6]), their role is typically less defined. Consequently, the models discussed in
this review are primarily centred around describing the activity of neurons and not glia.

Neurons generally receive signals at extensions from their cell body called dendrites
and send signals along a filament called the axon (see Figure 1 (a)). Neurons com-
municate by transmitting signals along axons, referred to as action potentials. These
are neural signals where the membrane potential at subsequent points along the axon
rapidly rises and falls in a matter of milliseconds. This propagating signal terminates
at the axon terminals, where it causes the release of chemical neurotransmitters at the
interface with the dendrite, known as the synapse. Additionally, neural communication
can also occur at gap-junctions directly between cells via direct electrical signalling, as
well as by chemical communication. While all neurons share similar features, the shape
and size of neurons can vary significantly. For instance, the number of dendrites and
axon terminals can differ considerably, and the length of the axon is generally much
longer in peripheral neurons outside of the brain. Moreover, some neurons (such as
the neuron depicted in Figure 1 (a)) have insulated axons called “myelination”, which
enables faster axonal signal transmission. The myelin is formed by glial cells called
oligodendrocytes wrapped around the axon, which insulate and decrease the capacitance
across the axonal membrane. Consequently, this increases the conduction velocity and
is essential for normal brain function. Myelinated neural tissue is referred to as “white
matter” whereas unmyelinated neural tissue is called “grey matter”.

Neurotransmitters activate receptors, which in turn have excitatory or inhibitory
effects on the postsynaptic neuron. For example, the key receptors for glutamate
all have excitatory effects, whereas for GABA the main receptors result in inhibition.
There are many other neurotransmitters, the receptors for which can be both excitatory
and inhibitory (e.g. acetylcholine), meaning care should be taken when describing a
neurotransmitter as “excitatory” or “inhibitory”. These chemical changes result in a
transient change to the postsynaptic membrane potential, termed excitatory postsynaptic
potentials (EPSPs), or inhibitory postsynaptic potentials (IPSPs). These PSPs propagate
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Figure 1: Neuron and synapse anatomy. (a) Simplified illustration of neuron anatomy
(modified from Silverthorn et al. [187]). The cellular membrane of neurons maintains
a steady state of electrochemical equilibrium at a potential difference around -70 mV.
Incoming signals from other neurons perturb the membrane potential at the cell body,
until a threshold potential is reached. At this point, the neuron sends a unidirectional
self-propagating signal (an action potential) along its axon to the synaptic terminals.
These terminals interface with the dendrites and cell bodies of other neurons at junctions
called synapses. The anatomy of the synapse is intricate and relies on a number of
sub-cellular interactions of neurotransmitters. Neurotransmitters are stored in vesicles
at the terminals, which are released into the synaptic junction upon receiving an action
potential. The neurotransmitters trigger the movement of ions on the next neuron,
depending on which ion channel it activates. Different types of neurotransmitters
activate different receptors, which can either excite or inhibit the connecting neuron by
increasing or decreasing the membrane potential respectively. (b) Sketches of the lateral
arrangement of neuron in the cortex (Ramón y Cajal [168]), which form functional units
of cortex known as ‘cortical columns’. The activity of these units are described by neural
field models, and are thought to be a primary source of the EEG signal due to location
and geometric arrangement.
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along the dendrites to the cell body where they are summed and the resulting alteration
to the membrane potential of the postsynaptic neuron can lead to the generation of a new
action potential and so the process continues. The description above of neurotransmitter
kinetics has been vastly simplified, as our definition of microscopic addresses the
dynamics of cellular to multi-cellular spatiotemporal scales. Whereas neurotransmitters
and all of their numerous associated processes such as extra-cellular dynamics and
molecular biochemical pathways constitute entire fields of study within neuroscience
and other disciplines such as biophysics.

The vast majority of the volume of the brain, the cerebrum, is divided into two
hemispheres which can be organised into layers and sections with different physio-
logical structure or class of responsibilities in information processing. Populations of
densely interconnected neurons give rise to complex and rich emergent dynamics at
the macroscale. Rhythmic oscillations in brain activity are correlated with a variety
of functions, which change and learn over time (Zeki [223]). Electroencephalography
(EEG) is used to measure the aggregated electrical activity in the brain, and as such
provides a useful reference point for models of neural activity. It has been demonstrated
that the main contributors to the EEG signal are primarily the post synaptic potentials
occurring throughout the neuronal population, rather than the action potentials (Buzsáki
[33]). This is due to the geometry of the axons and dendrites as the apical dendrites
form branched structures that orientate vertically to generate an equivalent current
dipole that is normal to an EEG electrode (Nunez and Srinivasan [157]). Beyond that
however, from an electromagnetism perspective, there is a fundamental gap of several
orders of magnitude between the local field potentials measure on the microscale and
the putative generators of the EEG signal on the macroscale. Because of the lack of data
over several orders of magnitude, the complex geometry of the brain and the fact that
the microscopic generators are not point sources like electrons but ionic dynamics, it is
difficult to apply Maxwell’s equations (Gratiy et al. [80]).

More than half of the surface area of the brain lies within folds and valleys, known
as “gyri” and “sulci”. On average, the surface area amounts to 2300 cm2 with a volume
of 1200 cm3 in adult humans (Elias and Schwartz [56]). The outer 2–3 mm cerebral
tissue is called the “cortex”, which can be further subdivided into four sections called
“lobes”. Cortical tissue is composed of layers of grey matter surrounding layers of
white matter. Neurons of the cortex are arranged in specific layers in a somewhat
regular column pattern, called “cortical columns”, which are illustrate in Figure 1 (b).
The cortex can be regarded as the part of brain responsible for cognition, and can be
broadly partitioned into regions (or “lobes”) according to the types of activities that
are processed. The frontal lobe is responsible for higher thought processes, such as
behaviour, self-awareness, and problem solving, whereas the occipital lobe at the back
of the brain is responsible for visual processing. Between these regions lies the parietal
lobe which is primarily involved in sensory processing and motor function. The temporal
lobes on the sides of a cortex are mainly utilised in memory processing, and language
comprehension.

The base of the brain is where the cerebellum and brainstem are located. The
cerebullum has a tightly packed grey matter morphology and has crucial roles in fine
motor function and balance. The brainstem connects the brain to the spinal cord, and
also contains circuits that are crucial for basic survival functions such as breathing
regulation. Deep structures towards the centre of the cerebrum involve structures such
as the cigulate cortex, thalamus, hypothalamus, pituary gland. These structures are
essential for relaying information throughout the brain, modulating neurohormones and
homeostasis, survival instincts, and processing short-term and long-term memory.

Connectivity in the brain is an ongoing topic of research, most notably with the
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human connectome project (Van Essen [208]). While the brain is a largely heterogeneous
structure, some key trends in connectivity on the macroscale have been observed. White
matter fibres diffuse out from the thalamus to the cortex, where interestingly there are
one hundred times more cortico-thalamic connections than thalamo-cortical connections.
A well known principle in neuroscience, often used to simplify models in mathematical
neuroscience, is Dale’s law (Eccles et al. [54]). This asserts that a neuron releases the
same neurotransmitters at each axon terminal, regardless of the identity of the target
cell. Although there are exceptions in reality, this simplification allows neurons to be
grouped together into populations by the characteristics of afferent neurotransmission,
in it’s simplest form allows partitioning of neurons into “excitatory” and “inhibitory”
populations. In the cortex, 80% of cortical neurons are excitatory whereas the remaining
20% are inhibitory and there is a somewhat regular column pattern in the way neurons
are arranged radially. It should be noted that 97% of connections in cortical tissue are to
other regions of cortex (Braitenberg and Schüz [18]).

Heterogeneous connectivity of neurons in brain tissue remains one of the significant
hurdles in experimental and theoretical neuroscience. Arrangements and connections of
neurons are unclear from microscopic examination of slices of neural tissue. Neurons in
the central nervous system, known as interneurons, feature many more dendrites and
axon terminals connecting to many other interneurons in highly non-trivial ways. Often,
identifying excitatory and inhibitory neurons is also a difficult task. MRI technologies
can be used to investigate bulk connectivities of neurons in neural tissue non-invasively
by the diffusion of water along axons, but this is an imperfect imaging process that
constitutes its own research sub-domain (Fink and Fink [65]).

2.2 Microscopic descriptions of emergent brain dynamics

The complexity of the brain and its multiple spatial and temporal scales of description
makes mathematical modelling an attractive tool to aid understanding. At the microscale,
the Hodgkin-Huxley model provides a simplified description of the cellular dynamics
of a single neuron and describes how a neuron produces an action potential (Hodgkin
and Huxley [87]). This model was arguably the first great achievement of mathematical
neuroscience, recognised through the 1963 Nobel prize in physiology or medicine.
It describes the release of an action potential in terms of ion flow across a cellular
membrane via four nonlinear ordinary differential equations. Hodgkin and Huxley
formulated the mechanisms responsible for the initiation and propagation of an action
potential in terms of ionic currents, conductances and membrane potentials. These were
based on Kirchoff’s laws and R-C circuits using measurements from a giant axon of the
squid.

Whilst the Hodgkin-Huxley equations accurately capture the voltage dynamics, they
contain a level of detail that is not always necessary, and may in fact hinder progress
by convoluting primary dynamical mechanisms. This is particularly the case, when we
consider coupling together interacting neurons to form networks. One approach to
address this complexity is to reduce the dimensionality of the system by identifying the
crucial steady states and stabilities and deriving a simpler dynamical system that has
similar dynamics.

An example of such an abstracted approach is seen in the Morris-Lecar model
[149], which combines ion gating variables into one state variable and so simplifies the
Hodgkin-Huxley equations. Another abstraction of the Hodgkin-Huxley model is the
FitzHugh-Nagumo model [66], which reduces the key dynamics to a two-variable system
by generalising the van der Pol oscillator model.

Often the full description of the voltage curve during an action potential is not
necessary to describe the fundamentals of neural dynamics, as it remains reasonably
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identical in shape and it is the timings of the action potentials that determine the
dynamics (Burkitt [31, 32]). Hence, further simplifications can be made of which the
most simple is the integrate-and-fire (IF) neuron (Dayan and Abbott [46], Burkitt [31]).
This model describes sub-threshold membrane potential dynamics and implements a
reset condition at the threshold potential which resets the potential to resting state and
represents an action potential spike with a Dirac-delta distribution. Although, there are
variations of IF models that represent the action potential, particularly for fast spiking
(Izhikevich [90]).

From these simplified microscale models, we can straightforwardly create large-scale
networks. For example, many spiking models of epilepsy utilise computer simulations of
large networks of multi-compartmental Hodgkin-Huxley style neurons. An advantage
of this is that they can be informed by in vitro studies and so parameters have a direct
correspondence to measurable electrophysiological properties. This correspondence
can help us understand physiological and pathophysiological brain dynamics by allowing
more detailed descriptions of ion channelopathies, such as mutations, channel up/down
regulations, glial cell interactions, synaptic changes, and network connectivity. An early
pioneer of such an approach was Roger Traub [204, 202] whose detailed models of
both the cortex and the thalamus were amongst the first to reproduce both healthy and
abnormal brain dynamics. Critically, these findings were similar to that found in in vitro
studies (Traub et al. [200, 203, 205]). Building on these early approaches, there are
modern-day projects that utilise this simulation-focused “bottom-up” description of the
brain: the most highly publicised being the Human Brain Project (Markram [132]).

However, there are disadvantages to pursuing this bottom-up approach. For example,
there quickly become issues with model complexity, data fitting, and interpretability
of results. With 1012 neurons in the brain, even an abstracted and simplified spiking
model (Giannakopoulos et al. [78], Larter et al. [122], Ursino and La Cara [206]), will
still effectively have the same level of complexity as the brain itself. This requires large
scale simulations on a super-computer to be effective. It also challenges the traditional
notion of a model: namely that it simplifies the order of complexity of the system being
modelled. For a more detailed discussion of the implications of modelling macroscopic
brain tissue with ensembles of microscale models, we refer the reader to several review
articles including de Garis et al. [47] and Eliasmith and Trujillo [57].

2.3 Toward macroscopic descriptions of emergent brain dynamics

An alternative approach is to consider the system from a more “top-down” perspective.
A useful metaphor in this regard is that of temperature in a room. We know that
temperature arises as the net kinetic energy of atoms within a room. However, it is
impractical to calculate temperature by considering interactions between every particle.
Instead, we model statistical quantities of particles in the room, leading to much simpler
models than can easily be solved.

In a similar manner, rather than considering the behaviour of each individual neuron,
neural field models describe the bulk behaviour of an area of cortical tissue en masse.
When constructing neural field models, neurons are typically segregated into populations
with shared statistical factors. As illustrated in Figure 2, the state variables of the
system are population-level statistics of large collections of neurons. Following Dale’s
Law (introduced earlier), a common characteristic used to partition neurons is the type
of synapses they connect to. For most models it is typical to partition neurons into
“excitatory” and “inhibitory” populations.

As discussed earlier, these models typically don’t consider non-neuronal populations,
such as glial cells, even those these are estimated to outnumber neurons around ten-fold
(von Bartheld et al. [211]). This is a significant assumption, since many non-neuronal
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cells support and actively facilitate connections between neurons. However, including
this layer of detail significantly increases the complexity of any neural model, regardless
of spatiotemporal scale. Furthermore, the neuronal constituents of these continuum
populations are also non-compartmentalised, so we do not consider the full detail of
diffusion of neurotransmitters and inputs relative to the neuron cell body using the
dynamics of the cable equation.

Figure 2: Diagram of neural mass approximation. A single neuron description starts
on the left, where models such as Hodgkin-Huxley are appropriate to describe quantities
such as membrane potential and spike frequency. Increasing in scale, abstracted
neuronal models such as leaky integrate-and-fire are used to model signal transmission
amongst interconnected neurons. At larger scales on the right, individually addressing
neurons becomes mathematically intractable, so a continuum approximation is typically
made. Models at this scale include neural field models and neural mass models, which
describe the evolution of aggregate quantities across different populations of neurons.
Neurons are grouped together by the type and time-scale of post-synaptic signals they
send. Aggregate quantities used in ensemble descriptions of neural dynamics include
mean membrane potential and mean spike rate of sub-populations, which are closely
related by a sigmoidal wave-to-pulse transfer function.

Focusing on the statistical quantities of the emergent behaviour results in a simpler
theoretical framework. One where the models remain deterministic, and in principle
tractable, even if the dynamics of the collective units do not. This provides an approach
to define a straightforward neural field model, where the emergent behaviour is defined
as the mean of its density. Effectively, this describes the dynamics of the averaged activity
across a region of space. Since many techniques used to analyse the brain, such as
local field potentials (LFPs), electroencephalography (EEG), or magnetoencephalography
(MEG), are observations of population level activity, such models are well suited to
understand these data recordings. A crucial advantage of the neural field approach is
that the resulting model is considerably less complex than an equivalent microscopic
network model. Therefore they are amenable to both forward modelling approaches,
such as exact solutions using Green’s functions (Coombes et al. [39]), bifurcation theory
(Kuznetsov [115]), model inversion techniques such as DCM (Kiebel et al. [105]), Kalman
filtering (Freestone et al. [73], Balson et al. [9]), as well as machine learning approaches
(Ferrat et al. [64]).

3 A potted history of neural field models

In this section, we will review key aspects of early neural field models. We first
define the overall principles and elements of a neural field model, using the Amari
field equations as a scaffold for addressing the main assumptions necessary for the
construction of all neural population models. We then provide a brief overview of
the history of this class of models from the 1950s to the 1970s before discussing the
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Figure 3: Transfer functions and integral kernels of neural field models. (a) The
sigmoidal wave-to-pulse transfer function is responsible for relating the mean membrane
potential to the mean firing rate of a neural population. (b) The temporal integral kernel
represents how incoming action potentials propagate and decay over time across the
neural membrane. An incoming action potential has maximal influence on the neurons
membrane potential shortly after it arrives, when neurotransmitters are released at the
synaptic junction and interact with the neuron membrane, which perturbs the membrane
potential by net ion movement across the neuron membrane. The strength of this
potential perturbation depends on the proximity of the synapse to cell body, and decays
over time. (c) The spatial kernel assigns weight to neural signals between populations
depending on the population types and their spatial proximity, which takes into account
the density of connections between populations. The connectivity between populations
decays as the spatial distance between two points increases, hence there is a spatial
limit on the maximal mean firing rate from one population to another.

Figure 4: Diagram of basic two population neural field model (adapted from Wilson
and Cowan [218]). This illustration gives a magnified representation of two intercon-
nected neural continuums across one spatial dimension (with only nearest connections
shown for brevity). Here we consider an ‘excitatory’ population and an ‘inhibitory’
population, where excitatory connections are represented by solid arrows whereas in-
hibitory connections are represented by dashed arrows. Neural field models in practice
are indexed by a continuous spatial variable, as opposed to the discrete objects repre-
sented here. Although long-range connections are not shown for brevity, the strength of
connections between neural populations tend to decrease exponentially with distance.
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canonical neural field model by Wilson and Cowan. We then compare this with concurrent
formulations of neural field theory by Amari and Nunez and discuss the differences and
similarities in mathematical structure. This section sets the scene for a discussion of
more recent advances in neural field modelling considered in Section 4.

Before we begin, it is important to note that as neural field modelling approaches have
evolved, a variety of names have appeared throughout the literature including ‘neural
mass models’, ‘mean field models’, ‘neural population models’. Although these terms are
all closely related, they are conceptually different and have been used interchangeably
and ambiguously in the literature. The origin of ‘neural mass models’ can be traced back
to the work of Walter Freeman and the concept of mass action: the observed population-
level behaviour of a mass of neurons (Freeman [70]). In his seminal work Freeman
defined a second-order differential equation to describe the evolution of the population-
level response to an external stimulus within the olfactory bulb. Over time, ‘neural mass
models’ came to refer to the subset of neural field models constrained to a single point in
space that have no spatial dependence. will continue this discussion in Section 4.3. Since
neural field models describe the average behaviour of neural populations, they’re also
commonly referred to as ‘mean field models’. However it must be highlighted that this is
not the same as utilising the ‘mean-field approximation’ from statistical mechanics (see
for example Sompolinsky et al. [192]), where a network of interacting single neurons
is replaced by a Gaussian process describing the average behaviour of a single unit.
For more details, we refer the interested reader to Sompolinsky et al. [192], Vollhardt
[210], Martínez-Cancino and Sotero Diaz [138], and the many references therein. The
connection between this class of models and neural field models will be examined in
Section 5.2.2. In this Section our focus is on exploring the origins and principles of the
more general class of neural field models.

3.1 Principles of neural field models

Whilst the origin of the modern formulations of neural field models is found in the
seminal works of Wilson and Cowan [217, 218], the neural field model proposed by
Amari [5] provides a clearer framework for our definitions and the essential assumptions
common to all neural field models by construction.

Within the neural field framework, neural interactions occur in a two-dimensional
“cortical sheet”. This can be thought of as unfolding the sulci and gyri of the cortex
into a flat sheet that is, on average, about 2.6 m2 (Haberly and Shepherd [85]). To
mathematically do this, we must consider two limits, the first countable and the second
uncountable. First we take the thermodynamic limit, where the number of neurons
approaches infinity whilst keeping the neuron density constant). Then we apply the
continuum limit, where the neurons are treated as true mathematical points and the
lattice spacing between the neurons shrinks to zero resulting in a continuum across the
sheet.

Mathematical assumption: In neural field models, the cortex is treated spa-
tiotemporally as a continuous two-dimensional sheet, in the sense that radial re-
dundancy exists in the cortical columns and that the cortex is functionally two-
dimensional. This is a significant approximation as neurons are actually discrete
multi-compartmented entities embedded in a densely connected three-dimensional
laminated volume. This assumption is made so that neural tissue can be treated
as an averaged bulk entity (Freeman [70]) with approximated spatial and temporal
distributions.

Neurons are grouped together in populations based on shared characteristics such as
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the polarity of signals, timescales of operation, the depth of cortex. The state variables
are aggregate quantities of these populations, such as mean membrane potential ua(x, t)

where a is a population index, x is a point in the neural field, and t is a time. Overall, the
mean membrane potential is dictated by the mean firing rate of afferent populations.
The magnitude of an incoming signal at a neuron depends on which population it arrived
from, how far away the afferent neuron is, and how long ago the signal arrived. In
turn, the mean membrane potential of a population dictates the mean firing rate of
the population, which in turn influences the mean membrane potential of connected
populations.

The strength of an incoming signal at a neuron decays soon after the signal is received,
which can be represented as a simple temporal integral convolution. We can therefore
describe the evolution of the mean membrane potential as

ua(x, t) =

∫ t

−∞
ψ(t− T ) Ia(x, T ) dT, (3.1)

where the kernel ψ represents the temporal decay on incoming signals, and Ia(x, t) rep-
resents the incoming signals received by population a. Contemporary neural field models
typically represent these as temporal convolutions to allow for non-linear temporal
operators such as those found in conductance-based synapses (Peterson et al. [162]).

The input term can be represented as a delta spike train corresponding to incoming
action potentials with a spatial integral transformation that includes the spatial weighting
of signals received by population a,

Ia(x, t) =
∑
b

∫
Ω

wa,b(x,X)
∑
m∈Z

δ(t− T (m)
b (X)) dX + qa(x, t), (3.2)

where Ω denotes the spatial neural medium, the kernel wa,b(x,X) represents the spatial

weighting of signals from population b at position X to population a at position x, T (m)
b (x)

is the time of the m’th action potential spike from population b at the position x, δ(t) is
the Dirac delta distribution, and qa(x, t) is an external firing rate. The value of wa,b(x,X)

can be interpreted as the probability of connection between neurons. In other words,
the kernel represents the mean synaptic connectivity from population b at point X to
population a at point x. In the vast majority of neural field models, the spatial kernel
is assumed to be homogeneous so that wa,b(x,X) = wa,b(x−X) and the corresponding
integral transform is a spatial convolution.

Anatomical assumption: For every point in the neuronal medium, each neuron
is assumed to be randomly connected, following some spatially homogeneous distri-
bution. Collections of axons connect to nearby neurons, and can connect to neurons
of the same population. This is a significant assumption, as a multitude of emergent
dynamics of neural tissue arises from the non-trivial and non-local connectivity
between constituents, which appears to follow fundamentally non-random trends.

The delta spike train can be replaced with a phenomenologically derived wave-to-
pulse transfer function (also known as a firing rate function). Effectively this converts the
mean membrane potential into a mean firing rate (Freeman [72]) if the synaptic response
is on a slower timescale than that of the interspike interval and the variance is small
(Coombes et al. [39], Bressloff and Coombes [24]). Axonal conduction velocities can be
assumed to be infinitely fast at this point in the derivation, however many contemporary
models include a finite conduction velocity and a time-dependent component in their
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definition of wa,b. Hence, we can express incoming signals from population b to population
a as

Ia(x, t) =
∑
b

∫
Ω

wa,b(x,X) fb[ub(X, t− |x−X| /v)] dX + qa(x, t), (3.3)

where v is the axonal conduction velocity, and fb is the wave-to-pulse transfer function.
Traditionally, this is a static nonlinearity such as a sigmoidal function that is continuously
differentiable, monotonically increasing, and saturating to a constant for small and large
input values. This represents populations of neurons saturating to a maximal firing rate
as the mean membrane potential increases. The most common form of this transfer
function is the single logistic sigmoid, which is given as

fa(ua) =
Fa

1 + exp[−λa (ua − θa)]
, (3.4)

where ua is the membrane potential of population a, Fa is the maximum firing rate of
population a, and λa/θa are the shape/location parameters.

Mathematical assumption: We interpret the sigmoidal function, or in this case
the logistic equation, as a close approximation of the cumulative function of a normal
distribution (Marreiros et al. [133]), instead of the usual error function. In this way it
has an associated mean and standard deviation of thresholds, that are averaged over
a neuronal population. However, this assumes that the thresholding function is that
of a McCulloch-Pitts neuron [143], which is artificial and over-simplified compared
to an actual spiking neuron model. Essentially, the sigmoidal function is a nonlinear
function that is continuously differentiable, increasing, and smoothly bounded at
both ends. The error function and the logistic equation are examples of sigmoid
functions and are found in many natural systems (DeLean et al. [49]). For further
information on its derivation, see the paper by Freeman [71] which was one of the
first papers to try and derive the sigmoid function from experimental data, although
it did appear in relation to neural models earlier than this (Freeman [67], Wilson
and Cowan [217], Lopes da Silva et al. [129], Nunez [153]).

In Figure 3 we present illustrations of examples of kernels ψ(t) and wa,b(x), as well
as a plot of a wave-to-pulse transfer function. In Figure 3(b), three different temporal
kernels are shown. An exponential kernel assumes an instantaneous rise time, for
example, where there is no synaptic decay and a decay defined by the membrane time-
constant. An alpha function has a finite rise time and a synaptic time-constant that is
the same as the membrane time-constant. A double exponential kernel has separate
synaptic and membrane time-constants so that the rise and decay can be independent.
In Figure 3(c), two different spatial kernels are shown where the Bessel function has
a singularity at zero, whereas the Laplacian is finite at zero. Given that the region
containing the singularity is immeasurable (zero distance) and largely irrelevant (only
the tail of the distribution can be measured), the differences between these two functions
are effectively negligible.

Combining the above equations (3.1) and (3.3) and assuming an infinitely fast con-
duction velocity (v →∞) gives us the integral form of a basic neural field model:

ua(x, t) =

∫ t

−∞
ψ(t− T )

{∑
b

∫
Ω

wa,b(x−X) fb[ub(X,T )] dX + qa(x, T )

}
dT. (3.5)

This model represents the classical definition of the Amari equations.
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Physiological assumption: The spatiotemporal delay resulting from the finite
conduction velocity in Equation (3.3) can be omitted if we assume the conduction
velocity is infinitely fast. This can be a suitable assumption for modelling smaller
sections of neural tissue. For brevity, we will make this assumption here so as to
eliminate the |x−X| /v term in the temporal argument of u(x, t) in the integrand.
However, not all neural field models make this assumption.

From this foundation, we are in a better position to understand how neural field
models evolved in the following decades, all of which are derived from these same
fundamental principles. Referring to this structure also gives a clearer view of concurrent
modelling approaches of this era, helping us to understand how this type of modelling
was initially conceived between works of key research groups. Before we embark on the
discussion of modern neural field modelling, we will revisit some of the early attempts to
model neural populations and further highlight the structures and assumptions made.
Many of these assumptions continue to be utilised in contemporary neural field models
today.

3.2 Origins of neural field theory

The method of studying the average behaviour of a neuronal population can be traced
back to Beurle [12]. He explored the emergent properties of a continuum approximation
to a mass of densely connected, uniformly distributed excitable cells, observing plane
waves, spherical waves and vortex effects. Subsequently, in the early 1960s Griffith
expanded these ideas, proposing a “nonlinear field theory” of neural networks [81]. Here
the concept of a connectivity kernel that related the level of excitation to distance was
introduced and the stability of emergent waves was subsequently studied [83]. Alongside
these developments, it was also shown that inhibitory neural action was critical for wave
stability [82].

What we might now consider to be the beginnings of modern neural field theory,
was established through the canonical models of Freeman [68], Wilson [217], Wilson
and Cowan [218], Nunez [153], Lopes da Silva et al. [129] and Amari [4, 5]. Previous
approaches only considered a single neuron population, whereas Wilson and Cowan
derived the first canonical neural field model in terms of spatially extended masses of
excitatory and inhibitory neurons.

Wilson and Cowan start with a description of mean neuronal activities across ex-
citatory and inhibitory populations, and propose expressions for aggregated neural
quantities based on concepts from neuronal dynamics. This approach effectively extends
the work of Beurle from a single population to multiple populations. A sketch of the
physiology considered in this model is given in Figure 4. The state variables used by
Wilson and Cowan are mean neuronal activity per unit time, where Âe(x, t) refers to the
activity of the excitatory population and Âi(x, t) refers to the activity of the inhibitory
population. That is, activity is considered as the proportion of excitatory or inhibitory
neurons at (x, t) that are firing action potentials. These variables are related to the
average firing rate: when this is one, the neurons are all firing action potentials at their
maximum rate whereas an average firing rate of zero represents typical background
activity. Small negative values are permitted and represent a dampening of background
activity. Wilson and Cowan state their model in terms of update equations, given by

Âe(x, t+ τ) = Re(x, t) Se[Ne(x, t)], Âi(x, t+ τ) = Ri(x, t) Si[Ni(x, t)], (3.6)

where τ represents the synaptic operating delay (time taken for a neuron to fire an action
potential after its membrane potential surpasses threshold), Ra(x, t) is the fraction of
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population a that is primed to fire an action potential (outside the refractory phase), and
Sa(u) = fa(u) − fa(0) (using fa from Equation (3.4) with Fa = 1) represents a centred
wave-to-pulse transfer function. The expression Sa(Na(x, t)) relates mean population
input, Na(x, t), to the fraction of population surpassing threshold excitation and firing
action potentials. Wilson and Cowan originally use a centred activation function that
passes through the origin and approaches a negative asymptote as the argument de-
creases below zero, but this is likely due to the choice in definition of the state variables
of the system.

Mathematical assumption: This formulation assumes that the primed fraction
of the population, Ra(x, t), and the firing fraction of the population Sa(Na(x, t)) are
independent. However, in general this is not true (Cowan et al. [44], Smith and
Davidson [189]). As highlighted by Wilson and Cowan, for finite populations of
neurons there will be a correlation between the recency of a neuron firing and its
likelihood of firing in the future. However, Wilson and Cowan argue that if the
number of neurons in these population is large enough, this correlation will become
small, and so independence is considered a reasonable approximation.

The synaptic operating delay τ refers to the period between a neuron’s membrane
potential surpassing the threshold potential and the neuron becoming active and ini-
tiating an action potential. This quantity is not well described in [217] and [218], but
it is effectively a computational timestep for the neural system assumed to have an
order of 0.5 ms. The model posed by Beurle [12] utilised the same terminology, and
the work by Wilson and Cowan sought to improve upon these early findings. It should
be highlighted here that neural population models at this time were largely conceptual
and the data on neuronal activity and synaptic interactions was not well-developed.
Significant assumptions about the values of these timescales had to be made in order to
begin the study of these particular dynamical systems, which could then be evolved and
improved over time.

The proportion of sensitive neurons in the population is complementary to the pro-
portion of neurons that are in the refractory period,

Re(x, t) = 1−
∫ t

t−re
Âe(x, T ) dT Ri(x, t) = 1−

∫ t

t−ri
Âi(x, T ) dT (3.7)

where re/ri are the refractory periods of excitatory/inhibitory neurons. Each spiking
input to the population has a magnitude that depends on the connectivity or synaptic
strength to the upstream population. Additionally, it is assumed that the populations of
neurons sum their net mean inputs and the effect of stimulation decays over time. This
can be thought of as the influence of spiking inputs to individual neurons on neuronal
activity diminishing as time from the input signal increases. It can be represented as a
temporal integral convolution with a kernel denoted by α(t), which is generally taken as
a simple exponential.

Physiological assumption It is assumed in the Wilson and Cowan derivations
that α(t) = α̂ exp(−t/µ)Θ(t) where α̂ is the maximum post-synaptic potential ampli-
tude, µ is a time constant of decay and Θ(t) is the Heaviside step function. It is
assumed that the effect of stimulation decays with the same rate across excitatory
and inhibitory neurons, so that µ is a population-independent time constant. Future
models incorporate this detail into their choice of spatial kernels and setting α̂ = 1.
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This alternate method tends to be more common since the magnitude (as well as
polarity of signals) tend to be dependent on the afferent population.

In addition to the temporal decay of afferent signals, the initial magnitude of those
signals will depend on where they originated from, as we conceptually described in
Equation (3.2). Using homogeneous spatial kernels, Wilson and Cowan express the mean
population inputs by

Ne(x, t) =

∫ t

−∞
α(t− T )

{
[βe,e ⊗x Âe](x, T )− [βe,i ⊗x Âi](x, T ) + Pe(x, T )

}
dT,

Ni(x, t) =

∫ t

−∞
α(t− T )

{
[βi,e ⊗x Âe](x, T )− [βi,i ⊗x Âi](x, T ) + Pi(x, T )

}
dT,

(3.8)

where [βa,b ⊗x f ](x) =
∫

Ω
βa,b(x−X)f(X) dX represents a spatial convolution, and Pe/

Pi represent external inputs to the excitatory/inhibitory populations.

Physiological assumption: Connectivity is assumed to be of the form βa,b(x) =

β̄a,b exp(− |x| /σa,b) where σa,b denotes the space constant and β̄a,b denotes the mean
synaptic weight (Uttley and Matthews [207], Sholl [186]).

A simpler expression of this system is possible by interchanging the order of temporal
and spatial integrals and using the time coarse grained variables

Aa(x, t) =
1

µ

∫ t

−∞
exp

(
− t− T

µ

)
Âa(x, T ) dT. (3.9)

These new variables provide a first-order simplification of the integro-differential equa-
tions.

Physiological assumption: It is assumed here that the membrane time con-
stant is an order of magnitude more significant than the synaptic dynamics. This
effectively makes the synapses instantaneous interfaces, which is not the case in re-
ality. Additionally, it is also assumed in the final Wilson and Cowan model that signal
propagation along axons is also instantaneous. This may be a suitable simplification
on smaller spatial regions, but may be inappropriate for modelling large sections of
cortex such as a lobe of the brain.

This change of variables is not without consequence. Wilson and Cowan highlight
that such a transformation inevitably removes high frequency variations, but they argue
that such variations are not relevant to the implications results. Since the kernel of
this integral transformation is 1

µ exp(−t/µ)Θ(t), the Green’s function of the differential

operator
(
1 + µ ∂

∂t

)
. This gives us the relation

Âa(x, t) = µ
∂

∂t
Aa(x, t) +Aa(x, t). (3.10)

Using the fact that the refractory period of cortical neurons ra is an order of magnitude
lower than the membrane time constant µ (Oshima and Jasper [159]), we have Ae(x, t) ≈
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Ae(x, t − r). We can then integrate both sides of the above relation and apply this
approximation to obtain∫ t

t−ra
Âa(x, T ) dT = µ [Aa(x, t)−Aa(x, t− r)] +

∫ t

t−ra
Aa(x, T ) dT,

≈ raAa(x, t), =⇒ Ra(x, t) ≈ [1− raAa(x, t)].

(3.11)

The derivation by Wilson and Cowan [218] initially asserts that axonal velocity is finite,
but they relax that assumption towards the end of their derivation. In this derivation we
will assume that the conduction velocity is infinitely fast so that we may keep our guided
derivation simpler. Expanding the left hand side of the Wilson and Cowan Equations
(3.6) in a Taylor series gives:

Âa(x, t+ τ) ≈ Âa(x, t) + τ
∂Âa
∂t

(x, t), (3.12)

where we have omitted the terms of higher order τ2, since τ � 1. Taking the derivative
of Âa with respect to t in Equation (3.10) and substituting the result into this expression
gives

Âa(x, t+τ) ≈ Aa(x, t)+(µ+τ)
∂Aa
∂t

(x, t)+τµ
∂2Aa
∂t2

(x, t) =

(
1 + τ

∂

∂t

) (
1 + µ

∂

∂t

)
Aa(x, t).

(3.13)
Here it is assumed that the synaptic operating delay is at least an order of magnitude
smaller than the membrane decay constant, enabling a further approximation:

Âa(x, t+ τ) ≈ Aa(x, t) + µ
∂Aa
∂t

(x, t). (3.14)

We can then substitute this result back into Equation (3.6) along with the above results
to obtain the system

µ
∂

∂t
Ae(x, t) = −Ae(x, t)

+ [1− reAe(x, t)]Se {[we,e ⊗x Ae](x, t)− [we,i ⊗x Ai](x, t) +Qe(x, t)} ,
(3.15)

µ
∂

∂t
Ai(x, t) = −Ai(x, t)

+ [1− riAi(x, t)] Si {[wi,e ⊗x Ae](x, t)− [wi,i ⊗x Ai](x, t) +Qi(x, t)} ,
(3.16)

where wa,b(x) = α̂µβa,b(x) is a scaled connectivity kernel, and Qa(x, t) =
∫ t
−∞ α(t −

T ) Q̂a(x, T ) dT represents a filtered external input. It should be noted that most neural
field models disregard the refractory period at this scale of description, and thus set
r = 0 implicitly or explicitly as an additional approximation. Disregarding the refractory
period, we note this system can also be represented in the more general form:

µ
∂

∂t
Aa(x, t) = −Aa(x, t) + Sa

{∑
b

wa,b(x)⊗x Ab(x, t) +Qa(x, t)

}
, (3.17)

where a, b are generic population indices, µ is the membrane time constant of population
a, and wa,b(x) is the connectivity kernel summarising the signed magnitude of post-
synaptic potentials.

The Wilson and Cowan model represented a major step forward for the field of
macroscale neural modelling, significantly extending the previous models of Beurle and
Griffith. Critically, the model proposed by Wilson and Cowan recognised and incorporated
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the influence on emergent neural dynamics of inhibitory neurons. In contrast, most early
neural field models only considered a single excitatory population. This permanently
changed the course of development of models in this field, and directly led to the modern
formulations of neural field theory. The dynamical system analyses of resulting fixed
points and limit cycles that led to these conclusions and consequent developments are
summarised by Zetterberg et al. [224], Ermentrout and Terman [60], and Neves and
Monteiro [152]. A brief summary of the applications and extensions of the Wilson and
Cowan model can be found in the reviews by Kilpatrick [106] and Chow and Karimipanah
[38].

Following the work of Wilson and Cowan, the neural field models were further devel-
oped by other authors. Of note is a publication by Amari who investigated spatiotemporal
patterns and information processing in homogeneous neural networks [4]. Amari further
developed these approaches in a subsequent publication [5], that considered an exten-
sion from discrete neural networks to a neural field continuum. In contrast to Wilson and
Cowan who segregated populations according to whether neurons were excitatory or
inhibitory, the neural field model put forth by Amari segregated neurons into populations
according to cortical depth. Here, each layer contained both excitatory and inhibitory
neurons, whose signals were encoded within the spatial kernels wa,b representing close
inhibitory connections and long-range excitatory connections (Amari [4]).

Physiological assumption: Amari assumes that each layer of cortical neurons
have non-identical time constants. As with the Wilson and Cowan model, it is still
assumed that incoming postsynaptic potentials have infinitely fast rise, followed
by an exponential decay. This is in fact a generalisation of the work of Wilson and
Cowan, which only allowed one time constant for all populations of neurons.

The derivation of the Amari field equations closely follows the principles we discussed
in Section 3.1, but instead using population-dependent temporal kernels ψa:

ua(x, t) =

∫ t

−∞
ψa(t− T )

{∑
b

∫
Ω

wa,b(x−X) fb[ub(X,T )] dX + qa(x, T )

}
dT, (3.18)

where ua(x, t) is the mean membrane potential of neurons in population a at position x
and time t, ψa(t) is the temporal kernel of population a, wa,b(x) is the spatially homoge-
neous spatial kernel that assigns signed weights to incoming signals from population b
according to distance, and qa(x, t) is the external input to population a. Note if we use a
linear description of temporal decay of signals, we may utilise Green’s functions to invert
the convolution and express the Amari model in differential form. As with many other
models in this period, it is assumed that spikes are instantaneous and exponentially
decay. Hence, Amari utilises the temporal kernel given by ψa(t) = 1

µa
exp(−t/µa) Θ(t),

where µa is the membrane time constant of population a and Θ(t) is the Heaviside step
function, which allows us to express the Amari equations in differential form,

µa
∂

∂t
ua(x, t) = −ua(x, t) +

∑
b

∫
Ω

wa,b(x−X)fb[ub(X, t)] dX + qa(x, t). (3.19)

This form of the Amari equations appears to resemble the field equations derived by
Wilson and Cowan, which we summarised in Equation (3.17) with some key mathematical
differences. The major difference appears to be the ordering of the sigmoidal wave-to-
pulse transform and the sum over afferent signals from different populations. Specifically,
the Wilson and Cowan model takes the sigmoid of a sum of inputs whereas the Amari
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model takes the sum of sigmoids of inputs. Another minor difference can be identified
in the definition of the wave-to-pulse transformations in either formulation. The Wilson
and Cowan model uses a centred sigmoid Sa(u), whereas the Amari equation uses a non-
centred sigmoid fa(u), but this difference can be rectified by a translation mapping given
by Sa(u) = fa(u)− fa(0). Despite this difference in formulation, both equations give rise
to similar dynamics. This is unsurprising since they describe the same physical system
from two different perspectives. The Wilson and Cowan model state variables start with
a description of “proportion of active neurons at a point”, which can be interpreted
as analogous to a mean firing rate of a population. This can be easily visualised by a
comparison of the diagrammatic representation of these systems in Figure 5. From
a purely mathematical perspective, the Wilson and Cowan model is equivalent to an
Amari model with a single membrane time constant µa = µ subject to the following
transformations:

ua(x, t) =
∑
b

Ab(x, t)⊗ wa,b(x) +Qa(x, t), (3.20)

µ
∂

∂t
Aa(x, t) +Aa(x, t) = fa[ua(x, t)]. (3.21)

This substitution and calculation were performed by Miller and Fumarola [147], but is
extended here for spatially-dependent neural fields. By taking the first time derivative of
Equation (3.20) we have

µ
∂

∂t
(ua(x, t)−Qa(x, t)) =

∑
b

(
µ
∂

∂t
Ab(x, t)

)
⊗ wa,b(x),

= −
∑
b

Ab(x, t)⊗ wa,b(x) +
∑
b

Sb[ub(x, t)]⊗ wa,b(x), (3.17),

= −(ua(x, t)−Qa(x, t)) +
∑
b

Sb[ub(x, t)]⊗ wa,b(x), (3.20),

⇐⇒ µ
∂

∂t
ua(x, t) = −ua(x, t) +

∑
b

fb[ub(x, t)]⊗ wa,b(x) + qa(x, t),

where qa(x, t) =
(
µ ∂
∂t + 1

)
Qa(x, t) +

∑
b fb(0)

∫
Ω
wa,b(x − X) dX. This transformation

only works for an Amari model with one membrane time constant instead of multiple
population-specific time constants (or if there is only one neural population).

While these models are closely related, the operations follow a different order when
applied to their respective state variables. In the Wilson and Cowan model the temporal
filter occurs after the sigmoid and before the sum, whereas in the Amari model the
temporal filter occurs after the sum and before the sigmoid. We highlight this in Figure 5.
Equivalence of these models occurs only if the temporal kernel is population-independent.
Under this assumption the operations commute and so are interchangeable. This is
due to the nature of the approximations taken by Wilson and Cowan and the original
(without time coarse graining) state variables used. However, one can still apply this
transformation to obtain an extended Wilson and Cowan model with multiple timescales,
but the resulting “activity” state variables will not be identifiable with the original state
variables proposed by Wilson and Cowan. Fundamentally, the separation in time scales
across populations is a different model that expands beyond the scope of the original
Wilson and Cowan equations.

Mathematically, the Wilson and Cowan formulation is arguably more attractive, since
linearising a dynamical system over a single sigmoid is less complex than linearising over
a sum of sigmoids. However, this formulation is delicate and requires a large amount
of assumptions and conceptual leaps to derive and simplify from first principles as we
have seen throughout this Section. Nonetheless, the ideas behind this transformation

MNA 2 (2022), paper 2.
Page 19/67

https://mna.episciences.org/

https://doi.org/10.46298/mna.7284
https://mna.episciences.org/


Neural Field Models: A mathematical overview and unifying framework

can be used to transform any neural field model into the single sigmoid form, and we
will formalise this within a general mathematical framework in Section 4.2.

 
 

 
 

Figure 5: Comparison of first order neural field by Amari (left) and Wilson and
Cowan (right). The relation between the Wilson-Cowan model and the Amari model
is illustrated with annotations of the corresponding state variables Ae, Ai and ue, ui.
Although the mathematical structure of these models appears different, they describe
similar dynamical systems from different perspectives. The differential operator in these
models can be represented as a temporal convolution with a kernel ψ using standard
methods of integral transforms. Temporal convolution is represented here with ⊗t and
spatial convolution is represented with ⊗x. Crucially, the Amari formulation considers a
sum of sigmoids of inputs whereas the Wilson and Cowan formulation considers a sigmoid
of a sum of inputs. These operations do not commute with the temporal kernel ψ unless
the kernel is population-independent, hence these formulations are only equivalent when
the temporal kernel is population independent.

These early neural field models were an important milestone for the development of
mathematical descriptions of large-scale neural activity. Analysing dynamical systems
became a common goal amongst a variety of research groups as this methodology became
more established throughout the 1970’s. However, there were significant limitations of
the utility of these models, and some of these limitations have been inherited by modern
approaches of neural field theory. In particular, the quantities modelled and parameters
used in these constructions were difficult to estimate and fit from methods of data
acquisition in experimental neuroscience at the time. This is still a problem that exists
today due to limitations in experimental neuroscience, but there are ongoing efforts
to improve how we quantify connectivity in neural tissue that can be utilised in new
iterations of neural field theory. Synaptic dynamics in particular have more complexity
and variability than this, the frameworks put forth by Wilson, Cowan, and Amari can
be regarded as first order neural fields, as they neglect the variability in the synaptic
dynamics and focus only on the overall mean membrane potentials. However, the models
proposed by Nunez [153] (as well as Lopes da Silva et al. [129] and Freeman [70])
address this shortcoming in synaptic interactions. Before we discuss modern neural field
models, we will review the development of this additional principle through a general
overview of the framework by Nunez.

3.3 Synaptic population dynamics

Around the same time as the work of Wilson and Cowan [217] and Freeman [68],
another distinct approach to modelling neural population dynamics emerged in the work
of Nunez [153]. The mathematical framework presented by Nunez uses different state
variables and finds another balance between biological plausibility and mathematical
tractability. The equations appear to be distinct from the Wilson and Cowan equations,
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as well as the Amari field equations, but as highlighted by Jirsa and Haken [96], the
Nunez brain wave equation is grounded in the same mathematical principles. Instead of
connecting the Nunez model to the frameworks of Amari, Wilson, and Cowan, we will
instead focus on what made this model distinct in its formulation. Although based in
the same principles, this model was constructed on the basis of synaptic interactions,
similarly to the models of Freeman [69] and Lopes da Silva et al. [129], all of which
foreshadow key developments in modern neural field theory.

Instead of modelling multiple populations, the Nunez brain wave equation effec-
tively models one population with both excitatory and inhibitory synapses. This model
aims to maintain a close relationship with established biophysics and begins with a
decomposition of electroencephalography (EEG) signals in terms of contributions from
excitatory/inhibitory post-synaptic potentials and action potentials. We will return to
our discussion of EEG in Section 4.4, as there are significant assumptions necessary for
this connection to EEG data, but here we will simply consider the conceptual electrical
potential of the neural field. Consider a one-dimensional neural field Ω consisting of a
single population of cortical neurons. The instantaneous gross potential of the field, Φ,
is related to the decomposition

Φ(x, t) ∼ φ ρA(x, t) + φe ρe(x, t)− φi ρi(x, t), (3.22)

where ρ is the density of cortical cells, φ is the local surface potential of a single
active cortical cell, A is the fraction of active cortical cells (similar to the state vari-
ables in the Wilson and Cowan equations), φe/φi is the surface potential of a single
excitatory/inhibitory post-synaptic potential, and ρe(x, t)/ρi(x, t) is the density of the
excitatory/inhibitory post-synaptic potentials. The underling relationship between A and
ρe/ρi is the principle driver of cortical dynamics.

The excitatory/inhibitory post-synaptic potentials ρe/ρi depend on the aggregated
fraction of active cortical cells A, weighted by the mean connectivity. The connectivity
in the neural field is described by a spatial kernel within an integral transform, as we
have seen for the Amari equations and the Wilson and Cowan equations. The model by
Nunez is explicitly intended to model large-scale neural activity, so axonal conduction
velocities c are considered. The duration of signal transmission between two points in
neural tissue is highly variable, depending on the complex geometry and topology of the
relevant neural networks. It is impossible to include this level of detail when modelling
at this scale, but the integral kernel can be expanded to incorporate the broad impact of
variable conduction velocities. Let wa(c, x,X) represent the mean connectivity from X to
synapse group a ∈ {e, i} at the point x than have an average axonal velocity c. Then the
mean excitatory/inhibitory post-synaptic potentials ρe/ρi can be represented in terms of
the fraction of active cortical cells A with

ρa(x, t) = Qa(x, t) +

∫ ∞
0

∫
Ω

wa(c, x,X)A

(
X, t− |x−X|

c

)
dX dc, (3.23)

where a ∈ {e, i} is a synapse index, Qa(x, t) is an external/sub-cortical synaptic input.
With similar justifications as found in the Wilson and Cowan model (Nunez [153, 155],
Nunez and Srinivasan [157]), a typical choice of spatial kernel is given by

wa(c, x,X) =

N∑
n=1

λ(a)
n f (a)

n (c) exp(−λ(a)
n |x−X|). (3.24)

In turn, the aggregated fraction of active neurons A also responds to changes in
the excitatory/inhibitory post-synaptic densities ρe/ρi. The mean membrane potential
u(x, t) can be assumed to be represented as a linear sum u(x, t) = νeρe(x, t) + νiρi(x, t),
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where νe/νi is the magnitude of excitatory/inhibitory post-synaptic potentials. Using
the principle of mass action (Freeman [68]), the mean membrane potential is related
to the firing rate of the population by a sigmoidal wave-to-pulse transfer function f(u)

(Equation (3.4)). Hence, we have the relation A(x, t) = f(νeρe(x, t) + νiρi(x, t)) (Jirsa and
Haken [96]). In the simplest case, this can be expanded about a fixed point of A and this
non-linearity can be replaced with a linear relationship, given by A(x, t) = A0 +νiρe−νiρi
(Nunez [153, 154], Jirsa and Haken [96]).

To transform these integral equations into partial differential equations, a spatial-
temporal Fourier transform can be used. Let ρ̂a(x, ω) = F{ρa : t→ ω} be the temporal
Fourier transform of ρa. Then from Equation (3.23), we have

ρ̂a(x, ω) = Q̂a(x, ω) +

∫ ∞
0

∫
Ω

wa(c, x,X) e−iω τ(c,x−X) Â(X,ω) dX dc, (3.25)

where τ(c, x −X) = |x−X| /c is the spatiotemporal delay. Assuming the connectivity
is homogeneous, we can write wa(c, x,X) = wa(c, x−X). For brevity, we set Wa(c, x−
X,ω) = wa(c, x − X) e−iω τ(c,x−X). Let ρ̃a(k, ω) = F{ρ̂a : x→ k} be the spatial Fourier
transform. Combining the above results, we have

ρ̃a(k, ω) = Q̃a(k, ω) + Ãa(k, ω)

∫ ∞
0

W̃a(c, k) dc. (3.26)

A wave equation can be obtained from this relation by evaluating the transformed
connectivity kernel, rearranging this relation, expressing A in terms of ρe/ρi (with linear
approximation or non-linear sigmoidal relation), and inverting the Fourier transforms.
Details of further steps in this general derivation, as well as simplifications and approxi-
mations, can be found in the works of Nunez [154, 155], Nunez and Cutillo [156], Nunez
and Srinivasan [157, 158].

Although the Nunez brain equation only models one cortical population, it resembles
a two-population model due to the way it factors the intertwined excitatory and inhibitory
synaptic interactions rather than using distinct neural populations. This alternative
focus on the synapses rather than the cells was also seen in the models of Freeman [69],
Lopes da Silva et al. [129], van Rotterdam et al. [209], and became a dominant concept
in the development of modern neural field modelling. Nonetheless, the wave equation
derived by Nunez was a significant theoretical development in neural field modelling,
and continues to be a source of discussion throughout the literature (Ross et al. [179]).
We will see in practice throughout the next Section how essential this synaptic viewpoint
is to the construction of modern neural field models.

4 Modern formulations of neural field modelling

Following the canonical works of Wilson and Cowan, Freeman, Amari, and Nunez in
the 1970’s, neural field theory continued to evolve as did the mathematical conceptualisa-
tion of a neural mass. Neurons are complex multi-compartmental units that transmit an
excitatory or inhibitory signal to other neurons if and only if a weighted sum of temporally
decaying afferent stimuli exceeds a threshold potential. Each of these constituent units
of neural systems exhibit non-local and non-trivial connectivity, and are also susceptible
to microscopic stochastic fluctuations. The accumulation of these complexities leads to
patterns of complex oscillatory activities - even in relatively small systems - that appear
to be crucial for information processing in neural systems. Key results from these early
neural field models demonstrated that a statistical physics approach may be viable,
perhaps essential, to explain fundamental modes of function and signal propagation
in neural systems. Developments on this front are critical to advancing neuroscience,
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understanding information processing, and developing novel solutions and therapies to
common neurological diseases that exhibit pathological oscillation in brain activity. As
this branch of mathematical neuroscience progressed, necessary developments were
made in the level of detail of these models, particularly as more neural populations were
integrated in this mathematical framework.

This increased granularity and level of detail occurred throughout the resurgence
of neural field models in the 1990’s (Freeman [72], Wright et al. [221], Wright and
Liley [222], Nunez and Cutillo [156], Jansen and Rit [91]), especially when methods
to transform the integro-differential equations into partial differential equations were
employed (Jirsa and Haken [95, 96], Robinson et al. [178]). At this point there was a
significant increase in the literature as researchers realised that neural field models
were a viable way to describe brain activity as measured by the EEG, for example, brain
rhythms (Liley et al. [124, 125], Nunez and Cutillo [156], Robinson et al. [177, 176],
Rennie et al. [172]), the effects of anaesthesia (Steyn-Ross [195], Bojak and Liley [16]),
the onset of dementia (Bhattacharya [13], Pons et al. [164], Müller [150]), and epilepsy
(Lopes da Silva et al. [130], Breakspear et al. [19], Blenkinsop et al. [15], Kramer et
al. [110], Martinet et al. [137]).

In this section, we will look at central concepts prevalent in all modern neural field
(and neural mass) models, where the model output can be interpreted as an integral
equation typical of a signal processing problem. The physiological basis for these
modern neural field approaches are addressed, and we discuss how this gives rise to
differences in mathematical structure between neural field models that describe the
same phenomena. Following this, we will give an example derivation of a general multi-
population neural field model, utilising the assumptions found in the work of Amari [5],
Robinson et al. [178], Jirsa and Haken [96], and Coombes et al. [39]. We show how
the integral form of these equations are reformulated as coupled partial differential
equations. The original reduction of the field equation and subsequent derivation of the
partial differential wave equation was performed by Jirsa and Haken [96] and Robinson
et al. [178]. This was recapitulated by Coombes et al. [39] and is summarised and
annotated below for completeness sake, and for future reference. Special attention
is paid to the underlying assumptions that lead to the model equations. We will then
briefly discuss non-linear and stochastic extensions of the modern neural field modelling
framework and conclude with a discussion on the limitations of neural field theory before
we show how this framework can be simplified further by considering connectivity at a
point only. This eliminates spatial dependence, and provides the common structure to
neural mass models.

4.1 A unifying framework for neural fields

Historically, the level of description of neural field models has been at the level
of mean membrane potentials (or equivalently the mean firing rate) across neuronal
populations. This characterisation using these state variables seems intuitive at first,
but it lacks essential detail on the inputs to the mean membrane potential: synaptic
transmission. Modelling mean membrane potentials directly often does not allow for the
inclusion for different temporal dynamics corresponding to each type of post synaptic
potential. Instead, modern neural field models use the mean post-synaptic potentials
as their state variables to better capture this detail and provide a more realistic model
of neuronal dynamics. Neural field models following the publications of Wilson and
Cowan addressed the temporal dynamics of afferent signals in more detail, since the
magnitude, sign, and timescale of a received signal is dependent on the particular
neurotransmitter used (Zetterberg [225], Lopes da Silva et al. [129], van Rotterdam
et al. [209]). As mentioned in the physiological background in Section 2.1, synapses
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are remarkably complex interfaces subject to variability in neurotransmitters. This
can result in drastically different time-scales and signed magnitudes. Differences can
arise from the location of the synapse relative to the cell body, and the kinetics of the
neurotransmitter and the ion channels involved, as well as extracellular dynamics.

The representation of neural field models can differ significantly between publications
from different authors, sometimes even between publications from the same authors.
Throughout the literature, neural field models can be conceptualised as either a temporal
differential operator acting on state variables or as a type-II Volterra integral equation
(Stone and Goldbart [196]). Both forms are equivalent, but have different advantages
in practice. For instance, differential operator forms are more useful for the numerical
studies of these systems. Theoretically, it is simpler to work with the integral equation
formulation, as the temporal integral convolution operator clearly depicts the pulse-to-
wave transfer operation, which converts the mean firing rate to a mean post-synaptic
potential. All linear differential formulations can be expressed in integral form by using
Fourier transforms and Green’s functions. This was demonstrated in the previous section,
where we began with an integral description of the Amari field equations in (3.18). and
used elementary techniques to translate to a partial differential equation description of
the Amari model in (3.19),

ua(x, t) =

∫ t

−∞
ψa(t− T )

{∑
b

∫
Ω

wa,b(x−X) fb[ub(X,T )] dX + qa(x, T )

}
dT,

⇐⇒ µa
∂

∂t
ua(x, t) = −ua(x, t) +

∑
b

∫
Ω

wa,b(x−X) fb[ub(X, t)] dX + qa(x, t),

where ψa(t) = 1
µa
e−

t
µa Θ(t) is referred to as the temporal kernel (and Θ(t) is the Heaviside

step function). This formulation allows for a clearer interpretation of neural fields
as a signal processing problem, where the temporal kernel represents post-synaptic
processing. The temporal kernel can be any suitable function that is zero for all negative
t, has a sharp rise to maximum, and decays to zero at t increases.

The Amari field equations were a crucial extension of the model by Wilson and Cowan,
allowing for population-specific timescales. This permitted the inclusion of more realistic
population interactions, as different membrane timescales can account for different
trends in synapse locations and/or different neurotransmitter dynamics across different
populations. Neural field models following the work of Amari expanded on this concept,
and further generalised the input to the field equations to allow for the inclusion of more
detailed interactions at the synapse junctions between populations. We can illustrate
this critical expansion by extending the Amari field equations directly.

Consider a neural field across a one dimensional spatial domain Ω composed of
N generic neural populations and let ua(x, t) denote the mean membrane potential of
population a at the point x ∈ Ω at time t. The mean membrane potential is determined
by the mean post-synaptic potential Va,b(x, t) where b is a population that connects to
population a. The current mean membrane potentials will influence the conductance,
hence we can summarise the magnitude and polarity of the post-synaptic potentials with
state-dependent constants νa,b(ub(x, t)). This weighted sum of post synaptic potentials
(as well as any external input) will be temporally filtered, since the strength of a signal
decays rapidly. We can mathematically express this relation between ua(x, t) and Va,b(x, t)
as

ua(x, t) =

∫ t

−∞
ηa(t− T )

{∑
b

νa,b(ub(x, T ))Va,b(x, T ) + u0
a(x, T )

}
dT, (4.1)

where ηa(t) represents the synaptic kernel of population a. We note here that some
models (such as the cortical model from Liley et al. [124]) include an external input
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term within the braces in the integral, but the formulation of external inputs differs
between publications so we will omit these terms for now. More elaborate neural field
models, such as those seen in the work of Liley et al. [124] and Steyn-Ross et al. [195],
include more realistic conductance-based synaptic dynamics (Peterson et al. [162]) at
the expense of introducing further non-linearity to the model equations. However, most
neural field models in practice tend to use the simplest mapping from mean post-synaptic
potentials to mean membrane potentials by assuming synapses act instantaneously and
that synaptic weights are state-independent. That is, most authors set ηa(t) = δ(t) where
δ denotes the Dirac delta distribution, and set νa,b(ub) to be a constant value νa,b for each
a and b. This gives the mapping

ua(x, t) =
∑
b

νa,b Va,b(x, t) + u0
a(x, t). (4.2)

Each of these post-synaptic potentials can be expressed as a spiking input that is
temporally weighted, which is represented by a spatial convolution with a connectivity
kernel,

Va,b(x, t) =

∫ t

−∞
ψa,b(t− T )φa,b(x, T ) dT. (4.3)

where φa,b(x, t) denotes the mean pulse density at the synapses of population a from the
population b. For most neural field models, the external input to the system is added on
the post-synaptic potential level, rather than the mean membrane potential level. This
can be achieved by splitting the membrane external input u0

a(x, t) =
∑
b νa,bV

0
a,b(x, t) and

rewriting equations (4.2) and (4.3) as

ua(x, t) =
∑
b

νa,b Va,b(x, t), (4.4)

Va,b(x, t) =

∫ t

−∞
ψa,b(t− T )φa,b(x, T ) dT + V 0

a,b(x, t). (4.5)

The temporal decay and magnitude of post-synaptic potentials will depend on which
population they originate from. Using the same principles as for the Amari equation, this
can be expressed in the form of a temporal convolution describing the rise and fall of an
incoming synaptic transmission.

φa,b(x, t) =

∫
Ω

wa,b(x−X) fb[ub(X, t)] dX. (4.6)

The average firing rate is related to the average membrane potential using the same
non-linear sigmoidal transfer function fb employed in early neural field models, as we
saw in the previous section. The logistic function is a common choice of sigmoid across
this period of neural field models as well. A parameterisation of this used by Robinson et
al. [177] is

fa[ua(x, t)] =
Fa

1 + exp[−(ua(x, t)− θ)/σ′]
, (4.7)

where Fa is the maximum firing rate of neurons in population a, and σ′ = σ
√

3/π so that
θ and σ are the mean and standard deviation of a distribution of threshold values over
the neuronal population. The normalisation of σ tends to be done so that the derivative
of the sigmoid approximates a Gaussian (Rennie et al. [171]). The voltage scale used
here is with respect to the resting potential of the population, which is approximately
the same as the reset voltage after firing in a single neuron (Koch [108]). In a single
neuron, this is approximately -70 mV, and the threshold would be approximately -55mV
(Destexhe [50], Meffin et al. [145]). Therefore the threshold relative to resting potential
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is a difference of 15mV, of which Robinson et al. [175] uses a value of θ = 13.3 mV.
Common parameter values seen in the work of Robinson et al. include Fa = 340 Hz and
σ = 3.8 mV.

Combining equations (4.4), (4.5), and (4.6) results in the expression

ua(x, t) =
∑
b

νa,b

{∫ t

−∞
ψa,b(t− T )

[∫
Ω

wa,b(x−X) fb

(∑
c

νb,c Vb,c(X,T )

)
dX

]
dT

+ V 0
a,b(x, t)

}
. (4.8)

Using the mean membrane potential in analysis of these models can be cumbersome
in this more detailed framework, so typically the dynamics of the post-synaptic potentials
are analysed before linearly combining the results to give the mean membrane potential.
Upon interchanging the order of spatial and temporal convolutions, a general framework
for modern second-order neural field models is given by

ua(x, t) =
∑
b

νa,b

∫ t

−∞
ψa,b(t− T )

[∫
Ω

wa,b(x−X) fb (ub(X,T )) dX

]
dT + u0

a(x, t), (4.9)

Va,b(x, t) =

∫ t

−∞
ψa,b(t− T )

[∫
Ω

wa,b(x−X) fb

(∑
c

νb,c Vb,c(X,T )

)
dX

]
dT + V 0

a,b(x, t),

(4.10)
where

∫ t
−∞ ψa,b(t−T ) qa,b(x, T ) dT = V 0

a,b(x, t) and u0
a(x, t) =

∑
b νa,bV

0
a,b(x, t) are external

inputs. The generalised parameters derived throughout this Section are summarised in
Table 1. An illustration of the advantages that come with additional complexity of these
NFM models is given in Figure 6

4.2 Derivation of modern neural field models

Although they are rarely explicitly derived, most neural field models in the literature
can be manipulated and rearranged to resemble Equations (4.9) and (4.10), revealing
common underlying structures that differ only in their choices of spatiotemporal ker-
nels, populations and connectivity structures, and assumptions made. This common
mathematical framework allows for a more direct comparison of neural field models
and explicit signposting and discussion of their underpinning assumptions. To illustrate
this, we consider a common neural field model of cortical tissue by Robinson et al. [178].
This models the evolution of the mean membrane potential via the interactions of mean
post-synaptic potentials. Here we will derive the cortical model and show how the
integral equation formulation is transformed into a set of partial differential equations,
which can then be expressed as a system of ordinary differential equations (or stochastic
differential equations, depending on the nature of external inputs).

The cortical neural field model from Robinson et al. [178] contains two neuronal
populations, an excitatory (e) population and an inhibitory (i) population, in similar
fashion to the Wilson and Cowan model. This can be interpreted as modelling the most
prevalent types of neurons in the cortex, which secrete the excitatory neurotransmitter
AMPA and the inhibitory neurotransmitter GABA-A. A key simplification is made to the
general neural field model in Equation (4.9) where the kinetics and electrodynamic
response of these neurotransmitters, and hence the synaptic kernel of both populations,
is assumed to be the same.
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Figure 6: Comparison of 1st order NFM (top) to 2nd order NFM (bottom). We
illustrate this difference using a generic junction in a neural field model with three
populations where population b and c connect to population a. A key development in
modern Neural Field Models is the stratification of mean membrane potential state
variables ua into a set of mean post-synaptic potential state variables Va,b, Va,c with
weights νa,b, νa,c. This allows for the inclusion of specific hypotheses and assumptions
about the differences in temporal dynamics of synaptic transmission.
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Quantity Physical interpretation

1st order:
ua(x, t) =

∫ t
−∞ ψa(t− T ) {

∑
b φa,b(x, T ) + qa(x, T )}dT,

φa,b(x, t) =
∫

Ω
wa,b(x−X)fb[ub(X, t)] dX,

ua(x, t) Mean membrane potential of neuronal population a at position x and
time t

ψa(t) Membrane Temporal kernel of population a

wa,b(x) Spatial kernel of connections from population b to population a at
position x

φa,b(x, t) Pulse density of action potentials from population b to population a at
position x and time t

qa(x, t) External input to population a

T
(m)
a (x) Time of m’th action potential from population a at position x

fa(u) Wave-to-pulse transfer function for population a

2nd order:

ua(x, t) =
∑
b νa,b Va,b(x, t),

Va,b(x, t) =
∫ t
−∞ ψa,b(t− T ) {φa,b(x, T ) + qa,b(x, T )} dT,

φa,b(x, t) =
∫

Ω
wa,b(x−X)fb[ub(X, t)] dX,

Va,b(x, t) Mean post-synaptic potential at population a from population b

νa,b Magnitude and polarity of post-synaptic potentials at population a

from population b

ηa(t) Synaptic temporal kernel of population a

ψa,b(t) Membrane temporal kernel of transmissions from population b to
population a

qa,b(x, t) External input to population a from population b

Table 1: Table of quantities used in general neural field models. Physical inter-
pretations of quantities are provided for the notation used throughout discussions and
derivations of the first order neural field models in Section 3 and the second order neural
field models discussed in Section 4.
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Physiological assumption: We assume that the shape of the synaptic filtering
is the same for both excitatory and inhibitory inputs i.e. both AMPA and GABA-A
receptors. Their responses are in fact very close with GABA-A having only a slightly
higher rise time than AMPA, which is itself very small (Dayan and Abbott [46]). This
has the consequence that the synaptic τ and membrane time constants µ are the
same for both inhibitory and excitatory populations.

This gives us a single temporal kernel in our integral equation ψa,b(t) = ψ(t) for all
a, b in e, i. This allows us to push the sum over afferent populations into the temporal
integral, so we have

ua(x, t) =

∫ t

−∞
ψ(t− T )

[∑
b

νa,b

∫
Ω

wb(x−X) f

(
ub

(
X,T − |x−X|

v

))
dX

+ qa(x, T )

]
dT, (4.11)

where we have combined
∑
b

νa,b qa,b(x, t) = qa(x, t) for brevity. It should be noted here

that we only consider a neural field with one spatial dimension throughout this derivation,
and can be readily extended to two dimensions.

The external input is conceptualised as an “external” population (s), but for our pur-
poses this is notational. The significance of this term will not largely be discussed here,
as the form tends to depend on the model and application. The notation used throughout
the literature is qa(x, t) = νa,sφs(x, t), where νa,s is a scalar synaptic weighting and φs is
the firing rate of the external population.

The spatial connectivity, in addition to assuming random connectivity in the thermo-
dynamic limit, is also formulated such that neurons of either population indiscriminately
synapse onto other populations. That is, the spatial weighting on the incoming firing
rate from surrounding populations only depends on the spatial density of afferent neu-
rons. This allows us to make an additional notational simplification on the synaptic
kernel wa,b(x) = wb(x). In this sense, the spatial kernels dictate the spatial density
of neurons rather than the spatial density of synapses. In addition to this, the same
sigmoidal potential-to-rate transfer function is used for both populations, making the
notational simplification fb(ub) = f(ub). When considering finite conduction velocities,
spatiotemporal delays are incorporated into the model as

ua(x, t) =

∫ t

−∞
ψ(t− T )

[∑
b

νa,b

∫
Ω

wb(x−X) f

(
ub

(
X,T − |x−X|

v

))
dX

+ νa,sφs(x, T )

]
dT. (4.12)

where we assume a constant axonal propagation velocity v (Coombes et al. [39]).

Physiological assumptions: The axonal conduction velocity is assumed to
be a constant and identical for all populations on the same spatial scale. Axonal
velocities are different for different spatial scales depending on whether the axons
are myelinated or not, and are proportional to the thickness or the diameter of the
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axon (Lohmann and Rörig [127]). Experimental values also show that there is a
distribution of axonal conduction velocities between populations on the same scale
(Bojak and Liley [17]) and that these act as a linear filter (Roberts and Robinson
[174]). This distribution is neglected in this model for the sake of simplicity and the
conduction velocity will be constant unless otherwise explicitly stated.

This equation now serves as the starting point of the derivation of the wave equation
(Jirsa and Haken [96]). The neural field (in terms of the firing rate) is a convolution of
the spatial kernel with the spatiotemporally delayed sigmoid

φb(x, t) =

∫
Ω

wb(x−X) f

[
ub

(
X, t− |x−X|

v

)]
dX, (4.13)

and the membrane potential is a convolution of the synaptic (temporal) kernel with the
neural field

ua(x, t) =

∫ t

−∞
ψ(t− T )

∑
b

νa,bφb(x, T ) dT. (4.14)

Green’s functions and Fourier transforms are now used to reduce the canonical neural
field equation (4.9) into coupled partial differential equations (Jirsa and Haken [96],
Coombes et al. [39]) by decoupling the spatial and temporal components.

According to the theory of Green’s functions, we have

Dt {ua(x, t)} =
∑
b

νa,bφb(x, t), Dt {ψ(t)} = δ(t), (4.15)

Dx {φb(x, t)} = f

[
ub

(
X, t− |x−X|

v

)]
, Dx {wb(x)} = δ(x), (4.16)

where the differential operators over time Dt and space Dx are dependent on the exact
forms of ψ(t) and wb(x), respectively. In order to deal with the spatiotemporal delay, the
neural field is redefined so that the delay is absorbed into the spatial kernel with a delta
distribution where

φb(x, t) =

∫
Ω

∫ t

−∞
Gb(x−X, t− T ) f [ub (X,T )] dT dX, (4.17)

where Gb(x, t) = δ(t− |x| /v)wb(x) so that

Dt {ua(x, t)} =
∑
b

νa,bφb(x, t), Dt {ψ(t)} = δ(t), (4.18)

Dx {φb(x, t)} = f [ub (x, t)] , Dx {δ(t− |x| /v)wb(x)} = δ(x). (4.19)

To express this neural field in terms of coupled partial differential equations (PDEs), we
need to derive the operators Dx and Dt that correspond to the choice of temporal kernel
ψ(t) and spatial kernels wb(x) we make. In what follows, we will derive the operator
Dx using Fourier transforms to deal with the spatial time delay. After deriving the
spatial PDE, we will then derive the temporal differential operator Dt from experimental
principles and show how this is equivalent to using a double-exponential temporal kernel.

Finding the partial differential equation associated with the spatial differential opera-
tor Dx is a matter of determining a realistic connectivity kernel wb(x) for each population
and then taking spatiotemporal Fourier transform. Most neural field models tend to
use the Laplacian distribution, wb(x) = exp(−|x|/rb)/2rb where rb is the axonal range
of population b. The Robinson neural field model uses a different kernel instead, given
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by wb(x) = K0(x/rb)/2πr
2
b where K0 is a Bessel function of the second kind. This has

a similar decay rate to the Laplacian distribution, but this function is singular at the
origin, implying infinite connectivity between neuronal populations at a point. From
a modelling perspective, the difference in kernels, whether they have a singularity or
not, does not significantly change the model. This is because the region containing the
singularity is immeasurable and largely irrelevant to the millimetric scale at which a
neural field model describes. After choosing the Bessel spatial kernel, equation (4.19)
further simplifies to the resulting PDE,[(

1 +
1

γb

∂

∂t

)2

− r2
b∇2

]
φb(x, t) = f(ub(x, t)), (4.20)

where γb = v/rb as a temporal dampening term.
To obtain the corresponding temporal PDE, we can derive the temporal differential

operator Dt (and the analogous integral kernel) from biophysical principles. We start
from canonical R-C circuit equations, inspired by simplified spiking models such as
integrate-and-fire neurons with current based synapses (Burkitt [32]). In this case there
is no spiking mechanism and the state variables are treated as population averages with
rate based inputs. The membrane is described as a leaky capacitor with Caua(x, t) =

qa(x, t) where Ca is the capacitance — assumed to be constant for a given population —
and qa(x, t) is the charge at population a at position x at time t. Taking the derivative of
this gives us the current which can be separated into the leak and synaptic currents

Ca
∂

∂t
ua(x, t) = I leak

a (x, t) + Isyn
a (x, t),

=⇒ ∂

∂t
ua(x, t) = − 1

µ
ua(x, t) +

1

Ca

∑
b

Na,bIa,b(x, t),
(4.21)

where the membrane potential leaks over the membrane time constant µ (which we
had previously assumed is the same for all populations) and the synaptic current is the
linear sum of all the incoming currents Ia,b(x, t), with coefficients Na,b that quantify the
number of connections from population b to population a.

Physiological assumption: We approximate the synaptic and dendritic filtering
of the post-synaptic current Ia,b(t) as exponentially decaying from a maximal current,
over a synaptic time constant. This is a reasonably good fit to experimental data as
can be seen in previous modelling work by Destexhe et al. [51].

Continuing the derivation, the form of the decaying exponential for the post-synaptic
current is defined as

∂

∂t
Ia,b(x, t) = −1

τ
Ia,b(x, t) +Abφb(x, t). (4.22)

where Ab is the maximal current amplitude and τ is the synaptic time-constant. Differen-
tiating Eq.(4.21) with respect to time and substituting Eq.(4.22) gives

∂2ua
∂t2

= − 1

µ

∂ua
∂t
− 1

Caτ

∑
b

Na,bIa,b(x, t) +
1

Ca

∑
b

Na,bAbφb(x, t). (4.23)

Then back-substituting Eq.(4.21) into the second term on the right hand side of the
above equation gives

∂2ua
∂t2

= − 1

µ

∂ua
∂t
− 1

τ

[
∂ua
∂t

+
ua(x, t)

µ

]
+

1

Ca

∑
b

Na,bAbφb(x, t), (4.24)
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which, after collecting terms and multiplying through by τµ, becomes[
τµ

∂2

∂t2
+ (τ + µ)

∂

∂t
+ 1

]
ua(x, t) =

∑
b

νa,bφb(x, t), νa,b = Na,bsa,b, sa,b =
Abτµ

Ca
.

(4.25)
A more through discussion of this derivation for single neuron models can be found
in works by Gerstner and Kistler [77], Ermentrout and Terman [60]. More complex
descriptions of synaptic dynamics, such as non-linear conductance-based synapses, can
be utilised instead which is seen in the work of Liley et al. [123], Pinotsis et al. [163],
and Peterson et al. [162]. We will comment on these non-linear extensions later. For
this derivation, we will consider only linear synaptic kernels so that we may derive the
differential operator using Green’s functions, which gives rise to the following partial
differential equation(

τ
∂

∂t
+ 1

)(
µ
∂

∂t
+ 1

)
ua(x, t) =

∑
b

νa,bφb(x, t), (4.26)

which corresponds to the double exponential synaptic kernel,

ψ(t) =
1

τ − µ
[e−t/τ − e−t/µ] Θ(t), (4.27)

where µ and τ are the membrane and synaptic time constants, respectively.
The basic form of the Robinson model utilises three populations: excitatory cortical

neurons (e), inhibitory cortical neurons (i), and external non-specific neurons (s). At
this point, the Robinson model begins to deviate from other neural field models by
making a major anatomical assumption that effectively combines the cortical populations.
A diagrammatic comparison contrasting the Robinson model with typical neural field
models can be found in Figure 7.

Anatomical assumption: The local connectivity approximation Rennie et
al. [171] is used i.e. that the intra-cortical connectivities are proportional to the
density of neurons, as well as the average number of synapses involved. That is,
there is a symmetry between the type of post-synaptic neurons that a pre-synaptic
neuron will synapse onto. For example, if Na,b is the connectivity from a population
of neurons b, to a population a, then Ne,b = Ni,b. That is, there are approximately
the same proportion of connections from population b, to both the excitatory e, and
inhibitory i, populations. This approximation is also made with regards to the synap-
tic response sa,b where se,b = si,b. Since the synaptic constant for each population
interface is given by the product νa,b = Na,bsa,b, we have νe,b = νi,b for all populations
b. Please refer to Rennie et al. [171] for further details of this approximation. We
also assume that the sigmoidal functions used for both populations are identical.

The main consequence of this approximation is that the membrane potential for both
excitatory neurons and inhibitory neurons are equivalent. Upon expansion of the input
equation Eq. (4.26), to both excitatory and inhibitory populations a ∈ {e, i} with an
external input φs, and b ∈ {e, i, s}, we have(

τ
∂

∂t
+ 1

)(
µ
∂

∂t
+ 1

)
ue(x, t) = νe,eφe(x, t) + νe,iφi(x, t) + νe,sφs(x, t), (4.28)

(
τ
∂

∂t
+ 1

)(
µ
∂

∂t
+ 1

)
ui(x, t) = νi,eφe(x, t) + νi,iφi(x, t) + νi,sφs(x, t). (4.29)
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When we apply the local connectivity approximation to these equations where νe,b = νi,b,
it is clear that Eq. (4.29) becomes redundant as it is identical to Eq. (4.28) . For
simplicity, we set ui = ue and νa,b becomes νb, as there is only one afferent neural
population.

Physiological assumption: As a consequence of both populations having the
same time constants and the local connectivity approximation, inhibitory neurons
are assumed to have exactly the same characteristics as excitatory neurons, which
is obviously not true for biological neurons.

Even though there is only effectively one type of neuron, we can still distinguish
between populations as well as an external input. This is due to the different synaptic
products νb = Nbsb of the different populations and the different axonal dampening
coefficients γb. Although it is possible to treat the populations individually, this effectively
doubles the number of parameters and dimensionality of state space of the model.
Analytical and computational studies with spiking models have shown that when the
populations are treated differently, the results of a stability analysis are not substantially
different (Brunel [27], Meffin et al. [145]).

 

 

 
 

 

 

 

  

Figure 7: Diagram of simplification in the Robinson cortical NFM. This diagram
shows the simplification made by equating the synaptic coefficients νe,b = νi,b (high-
lighted by matching colours), which effectively combines the cortical excitatory and
inhibitory populations into one cortical population with two self-connections. External
inputs are represented by dotted arrows.

Mathematical assumption: As is commonly done in the literature, we will only
examine the spatially invariant case of the dampened wave equation i.e. the global
spatial modes.

To investigate the spatially uniform activity, the spatially inhomogeneous term in the
wave equation Eq. (4.20) is set to zero r2

b∇2φb(x, t) = 0. To make this a neural mass
model, we would set the axonal range to zero rb = 0. However, setting ∇2φb(x, t) = 0

allows us to solve for the spatially uniform solutions of the neural field model. This
removes the spatial variation while still preserving the axonal range, conduction velocity
and intra-cortical connectivities. The damped wave equation now becomes(

1

γa

∂

∂t
+ 1

)2

φa(x, t) = f(ua(x, t)), (4.30)
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where we have removed the spatially dependent term. Since solutions to these equations
are spatially homogeneous, we may drop the x−dependence and treat this as though it
were a neural mass model. Even though the model is assumed to be spatially isotropic and
homogeneous, there is still some spatial structure contained in the temporal dampening
term γb = v/rb, which contains information about the spatiotemporal delay. This makes
the category of the model somewhat ambiguous. Technically it is not a neural field model
as the field is spatially invariant, but it layers on top of one by including only the spatially
uniform solutions. Yet it could also be described as an atypical neural mass model with
spatiotemporal delays, so it is somewhere in between both categories. In the literature
it is described as a neural field model with only global spatial modes.

Previously, this cortical neural field model has been used to describe the whole cortex
(Robinson et al. [178], Rennie et al. [171]) and extended to a thalamo-cortical model
(Rennie et al. [172], Robinson et al. [175], Breakspear et al. [19]). In both instances, the
axonal range ra is different for both the excitatory, re, and the inhibitory, ri, neurons. By
taking the “local inhibition approximation” (Rennie et al. [171]) it is assumed that all
long range connections are purely excitatory, hence we can use ri � re =⇒ γi � γe. So
as ri → 0, γi →∞, which means that if separate wave equations are written for both the
excitatory γe, φe, and inhibitory γi, φi components, the inhibitory wave equation(

1

γi

∂

∂t
+ 1

)2

φi(t) = f(ui(t)) = f(ue(t)) (4.31)

becomes φi(t) = f(ue(t)). Therefore the inhibitory firing rate is governed by the sig-
moidal function of the membrane potential. Another consequence of this assumption is
that the long range excitatory to inhibitory connections are not included.

Anatomical assumption: In this model, since there are not distinct excitatory
and inhibitory cortical populations, there are no local inhibitory-inhibitory connec-
tions. These are hypothesised in other neural models to play a significant role
in brain dynamics such as alpha rhythmogenesis (Liley et al. [124]), and epilepsy
(Wendling et al. [214]). Further, long-range excitatory-inhibitory connections have
also not been included i.e. afferent connections from pyramidal neurons synapsing
on inhibitory interneurons. These would also significantly affect overall cortical
dynamics.

This gives us the full cortical neural field model proposed by Robinson et al. [178],(
1

γe

∂

∂t
+ 1

)2

φe(t) = f(ue(t)),(
µ
∂

∂t
+ 1

)(
τ
∂

∂t
+ 1

)
ue(t) = νe,eφe(t) + νe,if(ue(t)) + νe,sφs(t),

(4.32)

which, when rearranged and put into a coupled ordinary differential equation (ODE)
form, are usually expressed in the literature as

φ̈e(t) = γ2
e [f(ue(t))− φe(t)]− 2γeφ̇e(t),

üe(t) = αβ[νe,eφe(t) + νe,if(ue(t)) + νe,sφs(t)− ue(t)]− (α+ β) u̇e(t),
(4.33)

where α = µ−1 and β = τ−1.
This cortical model by Robinson et al. was extended to include thalamic populations.

Recent publications generally analyse the full thalamo-cortical model, which includes
a time delay between cortical and thalamic populations, but overall uses the same
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Figure 8: Illustration of Robinson cortico-thalamic NFM. External inputs are repre-
sented by dotted arrows and connections that utilise the limiting axonal range assumption
ra → 0 are shown in dashed lines. Connections that cross the cortex-thalamus boundary
incur a time delay of t0/2.

principles as discussed in this section so far. In a sense, we can interpret this thalamic
extension as an expansion of the non-specific external population term νe,sφs(t) in the
cortical model. In addition to the cortical neurons, composed of excitatory (e) and
inhibitory (i) sub-populations, Robinson et al. also consider populations from the specific
thalamic nucleus (s), the reticular thalamic nucleus (r), and a new input term arising
from non-specific subcortical neurons (n). The equations for the thalamo-cortical neural
field model are given by(

1

γ

∂

∂t
+ 1

)2

φe(t) = f(ue(t)),(
µ
∂

∂t
+ 1

)(
τ
∂

∂t
+ 1

)
ue(t) = νe,eφe(t) + νe,if(ue(t)) + νe,sf

(
us

(
t− t0

2

))
,(

µ
∂

∂t
+ 1

)(
τ
∂

∂t
+ 1

)
us(t) = νs,eφe

(
t− t0

2

)
+ νs,rf(ur(t)) + νs,nφn(t),(

µ
∂

∂t
+ 1

)(
τ
∂

∂t
+ 1

)
ur(t) = νr,eφe

(
t− t0

2

)
+ νr,sf(us(t)),

(4.34)

which, when simplified and expressed in ODEs,

φ̈e(t) = γ2[f(u(t))− φ(t)]− 2γφ̇(t),

üe(t) = αβ

[
νe,eφe(t) + νe,if(ue(t)) + νe,sf

(
us

(
t− t0

2

))
− ue(t)

]
− (α+ β) u̇e(t),

üs(t) = αβ

[
νs,eφe

(
t− t0

2

)
+ νs,rf(ur(t)) + νs,nφn(t)− us(t)

]
− (α+ β) u̇s(t),

ür(t) = αβ

[
νr,eφe

(
t− t0

2

)
+ νr,sf(us(t))− ur(t)

]
− (α+ β) u̇r(t),

(4.35)
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where α = µ−1 and β = τ−1, and t0 is the time delay of the full thalamo-cortical loop
(hence t0/2 represents the unidirectional delay from a thalamic population to a cortical
population or vice versa). An illustration of the full thalamo-cortical neural field model is
given in Figure 8.

Building off of the prior derivation and assumptions, the cortical model by Robinson
has lower dimensionality in state space and parameter space in comparison to other
neural field models. This allows extensions of the model to include more sophisticated
anatomical and physiological factors that are generally not possible in other neural
field frameworks. The neural field model proposed by Robinson and colleagues has
undergone a variety of modifications since its first appearance in the literature in 1997,
and has inspired other authors to make their own simplifications and extensions Marten
et al. [134]. Another canonical neural field that is contemporaneous of the Robinson
model is by Liley et al. [124]. This NFM was the first model to extend neural field models
to include more physiologically realistic conductance-based synaptic dynamics as we
discussed in Equation (4.1),

ua(x, t) =

∫ t

−∞
ηa(t− T )

{∑
b

νa,b(ub(x, T )) Va,b(x, T ) + u0
a(x, T )

}
dT. (4.36)

That is, the nonlinear mapping from mean postsynaptic activities Va,b to mean membrane
potential ua is temporally filtered (Ermentrout and Terman [60]) and the synaptic weights
are state dependent

νa,b(ub) =
urev
a − ub

|urev
a − urest

a |
, (4.37)

where urev
a is the reversal potential and urest

a is the resting potential. The synaptic kernel
considered is a simple exponential, which gives us

ηa(t) =
1

τa
exp(−t/τa) Θ(t),

=⇒
(

1

τa

∂

∂t
+ 1

)
ua(x, t) =

∑
b

urev
b − ua

|urev
b − urest

a |
Va,b(x, t) + u0

a(x, t).
(4.38)

From Eq.(4.38), we can see that because conductance-based synapses are linear in both
ua and Va,b, they are bilinear, which introduces another nonlinearity into the equations.
Eq.(4.38) cannot be written as a linear operator because the sum is nonlinear. This makes
this model fundamentally different to the other models described in this paper. The
Robinson model has been derived with conductance-based synapses and its dynamics
directly compared to linear current-based synapses (Peterson et al. [162]). Although,
this is more biologically realistic, it introduces another layer of complexity and makes
the analysis more difficult. Unlike the model by Robinson et al. [178], the Liley model
also includes long-range excitatory to inhibitory connections and different PSP’s for
excitatory and inhibitory populations.

Physiological assumption: In this relatively simple formulation of conductance-
based synapses, it is assumed that the reversal potentials are static parameters.
More accurate models also include additional extra-cellular dynamics where the
reversal potentials are state variables computed from extra- and intra-cellular ionic
concentrations (Cressman et al. [45], Krishnan and Bazhenov [111]). Ionic dynam-
ics are known to affect overall brain dynamics, particularly seizures (Ziburkus et
al. [226]).
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The Liley model was in turn extended by Steyn-Ross et al. [195] to a system of
stochastic differential equations that includes gap junctions. Gap junctions are electrical
synapses that do not have chemical neurotransmitters and are known to affect overall
brain dynamics, particularly with respect to neuron coupling and rhythm synchronisation
(Larsen [121], Evans and Martin [61], Traub et al. [201], Simon et al. [188]). Further
explorations of the dynamics and solutions to these systems forms an entire discipline of
mathematical neuroscience in its own right. Many of these concepts are discussed and
expanded upon throughout stochastic neural field theory, which we will briefly discuss
in Section 5.2.1.

4.3 Reduction to neural mass models

It is not always desirable to consider significant spatial extent within a neural field
model. For smaller spatial scales that are relatively isotropic and homogeneous, hav-
ing spatial dependence and the incorporation of long-distance spatial connectivity is
unnecessary, as this heavily complicates the analysis of neural population models. The
earlier work of Wilson and Cowan [217] initially maintained this smaller scope in a
spatially-invariant regime, before extending it to an early neural field model in 1973
(considered in Section 3.2). This earlier 1972 model would come to be known as a
“neural mass model” or NMM, which can be considered a special case of a neural field
model at a single point in space. This is mathematically equivalent to using delta dis-
tribution connectivity kernels wa,b(x) = ca,bδ(x) for each population. Around the same
time, NMMs were further developed and formalised by Lopes da Silva et al. [129] and
Freeman [70]. NMMs share a concurrent history with neural field models, with many
authors publishing significant contributions in both model types. NMMs omit spatial
dependence and spatiotemporal time delays but share the same principles of aggregate
neural action arising from statistical mechanics. While NMMs still maintain a high
degree of mathematical complexity, they provide a simpler realisation of statistical
mechanics in neuroscience, and are crucial to understanding the dynamics of neural
populations.

Inspired by the work of Katchalsky [102], Katchalscky et al. [103], Prigogine and
Nicolis [165] and others, it was Walter Freeman Jr who pioneered what we might term
today a “systems approach” to the study of neural masses (Freeman [70]) and from
where the term “neural mass model” derives. Freeman’s motivation for this approach
was essentially to strike a balance between physiological plausibility whilst remaining
computationally tractable, such that the output of the model might be directly linked
to electrophysiological recordings (LFP data in Freeman’s case). Taking Katchalsky’s
extension of Liesegang rings from diffusion-coupled chemical reactions as a basis,
Freeman [70] introduced a topological hierarchy of models styled the Ki formalism. The
full detail of Freeman’s work is beyond the scope of this section, but further developments
by Freeman led to analysis of neural mass models of the olfactory bulb in the rabbit
primary cortex.

Around the same time as Freeman’s formal establishment of neural mass action,
an aligned approach to studying the macroscale brain activity was proposed by Lopes
da Silva et al. [129] which they termed the “lumped parameter approach”. To briefly
recap this development, Lopes da Silva put forward a computational model of a two-
population neural mass model to investigate spontaneous EEG signal generation and
alpha-frequency rhythms. To analyse this model within a mathematical framework, they
reduced the complexity of the model by deriving a dynamical systems model of aggregate
activity within a single cortical column. Utilising the simplest approach, Lopes da Silva
and colleagues investigates excitatory thalamocortical relay cells (TRCs) that receive
external excitatory pulse density (from neighbouring columns, not explicitly modelled),
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and inhibitory feedback from local interneurons. External inputs to this system arise
from pulse trains from peripheral excitatory neurons in neighbouring columns, and are
integrated as another input to the TRC population (typically modelled as a Gaussian
process).

The two-population model proposed by Lopes da Silva et al. [129] was further devel-
oped by Zetterberg et al. [224] by extending it to a three-population model, which during
the resurgence of neural field models in the 1990’s, was used by Jansen et al. [92]. In
their 1993 publication, Jansen and colleagues proposed that the mechanisms guiding
the evolution of evoked potentials and spontaneous EEG signal generation are the same.
To show this, they constructed a model of pyramidal neurons in cortical columns in the
same fashion as done by Lopes da Silva and colleagues. The post-synaptic potentials
of the pyramidal population is identified as the EEG signal and also provides input to
surrounding interneurons. The model by Lopes da Silva utilises a second population
of inhibitory interneurons that provide feedback to the pyramidal neuron population.
Jansen and Rit extend this and include a third population of local excitatory interneurons
that also provide feedback to the pyramidal neurons. A diagram of the populations in
this neural mass model is given in Figure 9. The addition of this third population is
motivated by incorporating additional physiological realism of (long-range) excitatory
connections. To support the hypothesis of the same governing mechanisms, Jansen and
Rit replaced the random input term with transient pulses and reviewed the dynamical
model response and found concordance with experimental observations.

Neural mass models can also be well understood within the mathematical framework
we derived in Section 4.1. Here we will show how the Jansen and Rit equations can be
derived using a general neural field model equation. Since this is a neural mass model,
we will immediately make the substitution wa,b(x) = ca,bδ(x), where ca,b is a connectivity
constant and δ is the Dirac delta distribution. This removes spatial dependence entirely,
so we may omit the x−ordinate and express our neural mass model as

Va,b(t) =

∫ t

−∞
ψa,b(t− T )

[
ca,b f

(∑
c

νb,cVb,c(T )

)
+ qa,b(T )

]
dT, (4.39)

where it is also assumed that each population uses the same potential to rate transfer
function fb = f given by

f(u) =
2e0

1 + exp[−r (u− v0)]
, (4.40)

where e0 determines the maximal firing rate, v0 is the post-synaptic potential for which
50% of maximal firing rate is achieved, and r is the steepness parameter of the transfer
function. A minor deviation is made in this model from the framework we established
when the external input is concerned, though this is primarily a notational issue rather
than conceptual. Jansen and Rit do not use the mapping u0

a =
∑
b νa,bV

0
a,b, instead setting

u0
a = 0 for all a and considering only external inputs at the post-synaptic potential level.

They consider three populations: a pyramidal population (p), an excitatory population
(e), and an inhibitory population (i). In the same vein as the model by Lopes da Silva et
al., Jansen and Rit impose that the only non-zero connections are from p to e and i, from
e to p, and from i to p. This can be seen in Figure 9. The lack of self-connections in this
branch of models can be attributed to Lopes da Silva intending to derive the simplest
possible model for spontaneous alpha EEG rhythms. Additionally, the temporal filtering
of signals is assumed to be specific to the afferent population, giving the notational
simplification ψa,b(t) = ψb(t). Furthermore, it is also assumed that the temporal kernel is
of the form of an alpha function,

ψb(t) =
Γb
µb
t exp(−t/µb) Θ(t), (4.41)
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where Γb is a gain parameter, µb denotes the time scale, and Θ is the usual Heaviside
function. Different time-scales are implemented for excitatory and inhibitory signals, as
there is physiological evidence for different synaptic timescales and gain parameters
for common excitatory and inhibitory neurotransmitters. That is, temporal kernels for
post-synaptic potentials are set to be

ψe(t) = ψp(t) =
Γe
µe

t exp(−t/µe) Θ(t), ψi(t) =
Γi
µi
t exp(−t/µi) Θ(t), (4.42)

where (Γe, µe) and (Γi, µi) are the synaptic gain and time constants of the excitatory and
inhibitory synapses, respectively. The physiological manifestation for the difference in
excitatory and inhibitory post-synaptic potential amplitudes and timescales arise from the
position of afferent synapses relative to the neuron’s cell body. For instance, inhibitory
neurons are more likely to synapse near the cell body, producing larger potentials
(Martin [136]). This is accounted for by taking Γe < Γi. We can equivalently express
this system in terms of temporal differential operators. Using Fourier transforms, it can
be shown that the temporal differential operators corresponding to the excitatory and
inhibitory synaptic kernels are

D
(e)
t = D

(p)
t =

µe
Γe

[
d2

dt2
+

2

µe

d

dt
+

1

µ2
e

]
, D

(i)
t =

µi
Γi

[
d2

dt2
+

2

µi

d

dt
+

1

µ2
i

]
. (4.43)

Furthermore, we only consider external input to this system via the excitatory to pyra-
midal synaptic connections, so we will set qa,b(t) = 0 for all populations with exception
to qp,e. Inverting the temporal kernel for each population and applying the connectivity
between these populations as proposed by Jansen and Rit gives rise to the following
equations,

D
(p)
t {Ve,p(t)} = ce,pf (up) ,

D
(p)
t {Vi,p(t)} = ci,pf (up) ,

D
(e)
t {Vp,e(t)} = cp,ef (ue) + qp,e(t),

D
(i)
t {Vp,i(t)} = cp,if (ui) ,

up = νp,eVp,e(t) + νp,iVp,i(t),

ue = νe,pVe,p(t),

ui = νi,pVi,p(t).

(4.44)

Anatomical assumption: It is assumed that the magnitude of inhibitory im-
pulses is larger than the magnitude of the excitatory impulses. This assumption
and subsequent temporal kernels are inherited from van Rotterdam et al. [209].
The difference in amplitude was justified by considering that inhibitory neurons
typically have axonal terminals that lie closer to the cell body, which results in larger
perturbations upon inhibitory synaptic transmission (Kandel and Schwartz [101]).
Additionally, it is also assumed that excitatory impulses occur on a faster timescale
than inhibitory impulses.

Jansen and Rit additionally assume that pyramidal neurons synapse onto both the
excitatory and inhibitory populations equally, giving us ce,p = ci,p. These constants
are set to 1 for simplicity. We can see that this assumption makes the second equation
redundant, as we now have Ve,p = Vi,p = Vp. Furthermore, the synaptic coefficients at the
pyramidal dendrites are set to νp,e = 1 and νp,i = −1. Upon making these substitutions
and expanding the operator on the left hand side gives rise to the familiar Jansen and
Rit neural mass model seen throughout the literature,

V̈p(t) = Aaf (Vp,e(t)− Vp,i(t))− 2a V̇p(t)− a2 Vp(t),

V̈p,e(t) = Aa [cp,ef (νe,p Vp(t)) + qp,e(t)]− 2a V̇p,e(t)− a2 Vp,e(t),

V̈p,i(t) = Bb cp,if (νi,pVp(t))− 2b V̇p,i(t)− b2 Vp,i(t),

(4.45)
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where (A,B) = (Γe,Γi) and (a, b) = (µ−1
e , µ−1

i ). A follow-up publication by Jansen and
Rit in 1995 also investigates a double cortical column model, which effectively couples
two copies of the above dynamical system together. However, no substantial differences
in model output was found, aside from an extension of time delays that give rise to a
slow-wave component in EEG simulation. An extended discussion on the connectivity
constants ca,b is given by Jansen and Rit [91], providing more insight on the physiological
and anatomical assumptions used to set the values of these parameters. The typical
values taken here replace each connection with a scaled global connectivity parameter C,
so the final version of this model sets cp,e = C, νe,p = 0.8C, νi,p = 0.25C, ci,p = 0.25C. The
output of this neural mass model is given by the membrane potential of the pyramidal
population, up(t) = Vp,e − Vp,i, which is considered as the primary component underlying
EEG signals.

Physiological assumption: The output of this and the Wendling model assumes
that the primary generator of the EEG signal is post-synaptic input to the pyramidal
population, given by the sum of the excitatory and inhibitory post-synaptic potentials.
This is a common convention when linking neural field models to EEG data, but it is
putative and not used across all neural field models. For instance, the models by
Liley and Steyn-Ross associate the excitatory post-synaptic potential amplitudes with
an EEG signal whereas the models by Robinson et al. use the excitatory population
activity. It is typically assumed that an EEG electrode measurement corresponds
to the average membrane potential of the excitatory pyramidal population, though
it is also argued that inhibitory populations also play a role (Nunez and Srinivasan
[157]). From an electromagnetic perspective, the primary generators of the EEG
are not explicitly known, and the largest microscopic measurements we have are of
local field potentials, which are still several orders of magnitude away from what
is being measured by the EEG. Hence, from a modelling perspective we cannot
currently experimentally validate any assumptions about the primary generators of
the EEG. Given, that we have no way of testing any of these assumptions, or if any of
the models themselves correctly describe the large scale behaviour of populations
of neurons, the choice of model output that corresponds to the EEG is somewhat
arbitrary.

The model proposed by Jansen and Rit successfully built on the work Lopes da Silva
and colleagues and gave support for leading hypotheses on generation of spontaneous
EEG signals and response to evoked potentials. However, this model does not appear
to replicate high frequency phenomena, which is problematic for investigations in
neuropathology. The temporal kernel can behave similarly as a low-pass filter, which
can inadvertently remove high-frequency phenomena. To challenge this, an extension
by Wendling et al. [214], physiologically motivated the addition of another inhibitory
population into the framework provided by Jansen and Rit in order to replicate the
high-gamma activity seen in EEGs in subjects with epilepsy. The Wendling model
utilises the same pyramidal and excitatory populations as Jansen and Rit, but asserts
the incorporation of a slow inhibitory population and a fast inhibitory population. The
pyramidal population projects to each of the three peripheral populations, which then
each feed back into the pyramidal population. In addition to this, the slow inhibitory
population is hypothesised to down regulate the fast inhibitory population.

This extension done by Wendling et al. is motivated by links between different
inhibitory currents and the emergence of delta and theta rhythms in EEG (White et al.
[215]) as well as the link between gamma oscillations in EEG arising from the behaviour
of inhibitory interneurons (Whittington et al. [216], Jefferys et al. [93]). Wendling
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Figure 9: Diagram of Jansen-Rit (left) and Wendling (right) neural mass models.
The model by Jansen and Rit is an extension of the model by Lopes da Silva, and the
model by Wendling is an extension of the model by Jansen and Rit. Each subsequent
development adds more structure to the neural mass model and progressively more
assumptions about the connectivity and temporal dynamics between neurons in a cortical
column, which can be interpreted as a point in a neural field. These proposed models
normalise certain connectivity strengths νa,b and ca,b, and have been annotated in grey.

et al. also refer to the study by Miles et al. [146], which highlight distinct fast and
slow responses to the inhibitory neurotransmitter GABA-A in CA1 pyramidal neurons.
Specifically, the neural mass model incorporates an additional level of detail on axonal
projections of inhibitory interneurons in cortical columns through the choice of different
temporal kernels. The inhibitory synapses that lie at the end of inhibitory interneuron
axons can project onto the dendrites of their target neurons, or onto the cell body (soma).
Where these synapses project to can greatly influence the way these inhibitory signals
are integrated. For instance, a somatic-projecting inhibitory signal will have a larger
apparent magnitude and faster timescale relative to a dendritic-projecting inhibitory
signal when integrated at the axon hillock of the target neuron due to the spatial origin
of these signals. Experimental studies by Dichter [52] and Cossart et al. [41] highlight
the importance of this distinction when investigating epilepsy. These aspects can be
included by expanding the number of neural populations and corresponding temporal
kernels with different parameters.

The Wendling neural mass model can be derived using the modern neural field
framework in a similar fashion to the Jansen and Rit neural mass model, using the same
delta distribution spatial kernels wa,b(x) = ca,bδ(x), and alpha function temporal kernels

Va,b(t) =

∫ t

−∞
ψb(t− T )

[
ca,b f

(∑
c

νb,c Vb,c(T )

)
+ qa,b(T )

]
dT,

ψb(t) =
Γb
µb
t exp(−t/µb) Θ(t).

(4.46)

Instead, we consider 4 populations: a pyramidal population (p), an excitatory population
(e), a slow inhibitory population (s), and a fast inhibitory population (f ), with the temporal
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kernels

ψe(t) = ψp(t) =
Γe
µe

t exp(−t/µe) Θ(t),

ψs(t) =
Γs
µs

t exp(−t/µs) Θ(t),

ψf (t) =
Γf
µf

t exp(−t/µf ) Θ(t).

(4.47)

The connectivity between these populations follows the same arrangement as laid out by
the Jansen and Rit neural mass model: pyramidal neurons p project onto the peripheral
interneuron populations e, s, and f and each of these populations feedback onto the
pyramidal population p. Crucially, Wendling et al. also refer to the study by Banks et
al. [10], which suggests that the slow inhibitory population s also projects onto the fast
inhibitory population f . The population connectivity is diagrammatically represented in
Figure 9. The Wendling model then ‘inherits’ the simplifications made by Jansen and Rit:

• External input is only considered in the excitatory e to pyramidal p connections as
before, so we set qa,b(t) = 0 for all (a, b) 6= (p, e),

• The connectivity constants projected from the pyramidal population p are set
c.,p = 1 for simplicity, making separate equations for different pyramidal post-
synaptic potentials redundant V.,p(t) = Vp(t),

• The pyramidal synaptic constants are set to νp,e = 1, νp,s = −1, and νp,f = −1,

• The connectivity constant between the inhibitory populations is set to cf,s = 1.

From here, the procedure to derive the Wendling model ODEs is identical to the proce-
dure we used for the Jansen and Rit model: we invert the temporal integral operators as
linear differential operators and rearrange the equation to obtain

V̈p(t) = Aaf [Vp,e(t)− Vp,s(t)− Vp,f (t)] ,

V̈p,e(t) = Aa {cp,ef [νe,pVe,p(t)] + qp,e(t)} − 2a V̇p,e(t)− a2 Vp,e(t),

V̈p,s(t) = Bb cp,sf [νs,pVs,p(t)]− 2b V̇p,s(t)− b2 Vp,s(t),
V̈p,f (t) = Gg cp,ff [νf,pVf,p(t)− νf,sVf,s(t)]− 2g V̇p,f (t)− g2 Vp,f (t),

V̈f,s(t) = Bb f [νs,pVs,p(t)]− 2b V̇f,s(t)− b2 Vf,s(t),

(4.48)

where (A,B,G) = (Γe,Γs,Γf ) and (a, b, g) = (µ−1
e , µ−1

s , µ−1
f ). As with the preceding

Jansen and Rit model, the mean membrane potential of the pyramidal population up(t) =

Vp,e(t)− Vp,s(t)− Vp,f (t) is interpreted as the model output, corresponding to the EEG
signal. The connectivity parameters are handled in a similar fashion to the Jansen and
Rit model, where the connectivity is set to be proportional to a global coupling parameter
C νe,p = C, cp,e = 0.8C, νs,p = 0.25C, cp,s = 0.25C, νf,p = 0.3C, νf,s = −0.1C, cp,f = 0.8C.

From perturbing the synaptic gain parameters A,B, and G, six primary rhythms are
identified by Wendling et al. [214]. A key conclusion from this model was the impact of
dendritic inhibition in epilepsy. That is, the model proposed that a key explanation for the
transition from ‘non-seizure’ to ‘seizure’ activity can be explained by the impairment of
dendritic inhibition. This neural mass model has thus become the focus of a substantial
number of publications in mathematical neuroscience and EEG modelling regarding
epilepsy, which we will review in Section 4.4 of this paper.

The neural field models that transpired from the second wave of neural field mod-
elling in the 1990’s continued to refine concepts and systems proposed in canonical
publications from Wilson and Cowan, Amari, Freeman, Lopes da Silva, Van Rotterdam,
and Nunez. The work of Robinson, Liley, and Steyn-Ross incorporated contemporary
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findings from neuroscience and proposed new explanations for aggregate neural phe-
nomena across brain regions by using mathematical concepts such as time delays. The
models proposed by these authors expanded on the framework used by Amari, and
led to new theories on the generation of rhythms in EEG signals and proposed and
supported hypothesised mechanisms for seizure generation and spread throughout the
cortex. In tandem to this branch of models, spatially invariant neural mass models also
saw significant development throughout this period with the work of Jansen, Rit, and
Wendling. While these models focused on modelling smaller regions of cortical tissue,
they avoid difficulties in justifying spatially homogeneous kernels that have been in
use since the canonical field model by Wilson and Cowan. Modelling a single point of
cortical tissue as opposed to a continuum allowed for more efficient computation of
results and a more concentrated investigation on the aggregate circuitry required in
cortical columns required to sustain critical EEG rhythms in response to a random or
deterministic input. These theoretical developments were essential steps in realising
neural field models as we recognise them today, and provided the roots for contemporary
approaches in modelling neural tissue and making clinical inference from mathematical
and computational methods.

4.4 Contemporary clinical applications of neural fields

Electroencephalography (EEG) is an essential tool in neuroscience used to monitor
and assess aggregate brain activity, and frequently used in clinical neurology for a variety
of pathologies. This technique involves using an array of electrodes to detect and record
neural activity via fluctuations in the electrical potential on the order of micro-volts
(Smith [191]). It is one of the oldest modalities in neuroscience with high millisecond
temporal resolution at the cost of low spatial resolution. Specific questions where EEG
is used include investigations of the origin of common activity patterns in neural tissue,
in addition to a variety of clinical applications. EEG plays an important clinical role in
the diagnosis, localisation, and management of epilepsy syndromes. Crucially, it can be
used to assess emergence of slower rhythms and unprovoked discharges, appearing as
“spikes” and “waves” in the signal, which can be indicative of epilepsy (Smith [191], St.
Louis et al. [193]). It is also an essential tool in examining brain activity during sleep
and transitions in activity during the progression of the sleep cycle to diagnose and treat
sleep disorders. Additionally, it is an important tool in monitoring the progression of
dementia, assessing severity of tumours and strokes, as well as examining the depth of
anaesthesia and coma St. Louis et al. [193].

Quasiperiodic waves in the EEG are fundamental constituents of the recorded signal
and are used to infer neurological conditions. Historically, this has been done using
visual inspection of the EEG record, but software tools, such as Persyst (Guillen et
al. [84]), can reveal rhythms through routine Fourier analysis. These brain rhythms are
partitioned by frequency ranges and are not grouped by function. Certain activities and
levels of conscious activity are correlated with different frequency bands, but it should
be emphasised that our physiological understanding of the origin of these rhythms is
an ongoing topic of research. Slow rhythms include δ waves (1 – 3 Hz) and θ (4 – 7 Hz)
waves, which tend to be prevalent in drowsy subjects. Higher frequency ranges are
partitioned into α waves (8 – 12 Hz) and β waves (13 – 25 Hz), and γ waves (26 – 100 Hz).
The α rhythm is essential feature in every EEG report, as healthy adults at rest with eyes
closed tend to display a low-amplitude mixed-frequency background with a dominant
α rhythm. Excessive β rhythms are usually caused by drowsiness or sedative drugs.
The presence of intermittent slower rhythms in δ and θ bandwidths can also arise from
low states of arousal (also common in children and elderly), however they can also be
indicative of an epilepsy syndrome or progression of dementia (Medithe and Nelakuditi
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[144], Tatum [199], Emmady and Anilkumar [58]). Rhythms of higher frequency such
as γ waves (26 – 100Hz) and ripples (over 100 Hz) are not common in scalp EEG, but
thought to reflect epileptiform discharges. The compositions of rhythms observed on
an EEG are unique to each individual, and vary based on a variety of factors such as
drowsiness, pharmacology, and neuropathologies.

The activity and rhythms recorded on an EEG are believed to arise from variations
in population-level activity in neural tissue, therefore neural field models provide a
mathematical framework to identify mechanisms for the emergence of rhythms. In-
vestigations of rhythmogenesis with neural field models appear at least as early as
1974 with the work of Lopes da Silva et al. [129], which proposed a two population
neural mass model alongside a typical neural network simulation. The output of the
neural field model used resembles the α-rhythm on an EEG, providing a relatively simple
physiological hypothesis for the origin of neurological rhythms as a consequence of
neural population arrangements and activity in the cortex. As models of neural fields
matured, the questions and investigations of rhythmogenesis became more prevalent.
The work by Liley et al. [123] shows how neural field approaches were refined over the
decades and provided progressively more detailed hypotheses between the simulations
and the underlying neurophysiology. Rhythms in neural fields are determined by the
differences in timescales in difference postsynaptic temporal kernels, but the external
input term driving many of these models is also responsible for key aspects of rhythmic
output of these models. External inputs to neural field models tend to be simple white
noise inputs to an excitatory population, which represents neural activity not explicitly
modelled. Although a white noise process is the simplest process to use for this purpose,
a study by Freyer et al. [74] identifies that using a more elaborate stochastic process
with state-dependence and feedback produces a more physiologically accurate power
spectrum. Pharmokinetic influence, among other physiological states, are interpreted
as different sets of parameter values for neural field models throughout these studies,
which provides methods of generating theoretically motivated hypotheses for the preva-
lence, emergence, and persistence of rhythms. This is an essential step in understanding
the dynamics of these types of models, and leads onto crucial questions of stability of
rhythms and state transitions, such as regular dynamical changes observed during sleep
as well as pathological rhythms of epilepsy. Rhythmogenesis, both endogenous such as
sleep or pathological such as seizures is a fundamental part of neuroscience that neural
field models can be used to investigate.

Neural field models can also be used to investigate mechanisms of regular activity
state transitions in rhythms that occur during sleep. Despite being widely studied, there
is relatively little known about the neurophysiological processes involved during the
sleep cycle. Sleep can broadly be partitioned into three stages: Waking stage, the
Non Rapid Eye-Movement (NREM) stage, and the Rapid Eye-Movement (REM) stage.
The NREM stage comprises approximately 80% of the duration of sleep, and can be
distinguished on an EEG by the presence of slow oscillations, increased power in δ

frequencies, and distinct bursts of activity such as “spindles” and “K-complexes” (Purves
et al. [166], Nayak and Anilkumar [151]). The REM stage, sometimes referred to as
paradoxical sleep, is the deepest stage of sleep with little or no arousal in subjects and
commonly associated with dreaming. EEG activity recorded during this stage resembles
the higher frequency β and γ patterns seen during the waking phase (Purves et al. [166],
Al Sawaf et al. [3]). During sleep, brain activity alternates between NREM and REM
sleep in several cycles before waking, exhibiting discernible state transitions on an EEG
(Nayak and Anilkumar [151]) . Neural field models provide a mathematical route in
which these transitions can be modelled and studied in terms of the potential migration
of parameters governing mean quantities of neural tissue.
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Events that occur during the sleep cycle, such as sleep spindles and K-complexes, pro-
vide useful targets for modelling non-linearities and state transitions on EEG. Subjects
are typically motionless during sleep, which results in EEG recordings with less extrane-
ous noise compared to an EEG recording during wakefulness. The thalmocortical neural
field model summarised in Section 4.2 has also been used to investigate rhythms in sleep.
A publication by Abeysuriya et al. [1] finds a region of parameter space from which the
model output resembles sleep spindles. They suggest that these electrophysiological
events arise from the thalamic relay nuclei, instead of the reticular nucleus and predict
that the power in the harmonic of the spindle scales with the oscillation of the spindle.
Alongside this, other investigations by Weigenand et al. [213] and Costa et al. [42]
derive a two-population cortical neural mass model with conductance-based synapses
to investigate transitions between sleep stages. They find a mathematical formulation
that replicates patterns and transitions seen on sleep EEGs which is modulated by the
neurotransmitter input to the excitatory pyramidal population. Their model was spatially
extended to a four-population cortico-thalamic neural mass model by Costa et al. [43],
which was verified by comparing perturbations in the model to auditory stimulation of
subjects during sleep.

Rhythms observed during an EEG recording can be used to inform the depth of
sleep and level of consciousness of a subject during a sleep study. This is also a critical
component of clinical evaluation when assessing and diagnosing brain death or assessing
a comatose state. Additionally, rhythms on EEG can also be used to assess the depth
of anaesthesia, which must be carefully monitored before and during a surgery by
highly trained professionals. The development of neural field models with non-linear
conductance-based temporal dynamics by Liley et al. and Steyn-Ross et al. were highly
motivated by this particular application and used to investigate the phase transitions that
occur in cortical activity. General anaesthetics, such as isoflurane and benzodiazipines,
generally increase the level of inhibition in neural systems. The effects of which can
be investigated through bifurcation analysis of a neural field model. Steyn-Ross et
al. [195] investigate the action of modulation of inhibition in a conductance based neural
field model with spatial homogeneity and find three distinct states that correspond
to different EEG morphologies than can be related to the level of anaesthetic action.
As inhibition decreases, the models transitions from a “comatose” state, through an
“active” state, and eventually reaching a hyperactive “seizure” state, relating to several
studies of inhibitory-dominated regimes in microscale neural network models (Brunel
[27]). Their results predict a rapid transit between comatose states and active states
at a critical value of inhibition, and they propose a multistability hypothesis for the
switching between these two states. They find concordance between the behaviour of
clinical EEGs and model output, where the frequency spectrum peaks before collapsing
during the transition from active to comatose. A later publication by Bojak and Liley
[16] alternatively proposes a bifurcation mechanisms, instead of multistability, for the
transitions observed during anaesthetic intervention. The competing hypotheses of
multistability vs. bifurcation is common to investigations of epilepsy as well, and remains
highly contested. In this study, spatial homogeneity is not assumed and they investigate
the output of over 70,000 parameter configurations in order to try map the model
parameter space to physiologically plausible regions. Investigations of the connection
between clinical data and the parameter space are essential to one day utilising these
models for directing anaesthetic dosages in clinical practice and further understanding
these neurological mechanisms.

Another neurological phenomenon involving state transitions is found in epilepsy,
conceptualised as changes between a “seizure” state and a “non-seizure” state. Epilepsy
is another extensive sub-class of intermittent brain pathologies which encapsulates
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a variety of neurological syndromes characterised by recurrent seizures, which can
manifest as uncontrolled disturbances to movement, consciousness, perception and/or
behaviour. The type of epilepsy is often classified according to the seizures that occur,
which in turn indicate which parts of the brain and neural pathways are affected.
Epilepsy encompasses a wide variety of different brain disorders that result in recurrent
and/or unprovoked seizures. However, like many clinical sciences, there is often much
dispute over the terminology and classification of these syndromes that spans decades
of discussions across a wide variety of international neurology groups. The pathologies
underlying epilepsy are not always clear, but the syndrome appears to be related to
abnormalities in brain connectivity. Different people with epilepsy often present different
symptoms, levels of severity, and responses to anti-epileptic drugs. Hence, this condition
must be treated on an individual case approach instead of a one-size-fits-all strategy,
which requires regular consultation with neurologists. Diagnosis of epilepsy from EEG is
often a precarious clinical decision making process. A false positive can result in mis-
prescription of anti-epilepsy drugs with side effects, in addition to impacts on anxiety and
overall mental well-being. On the other hand, a false negative may lead to an untreated
epilepsy patient having a seizure without warning during daily activities, which can
lead to serious injury or death. Severe cases of epilepsy that cannot be controlled
with medication often require highly invasive surgical intervention, which involves
mapping of epileptogenic sections of cortex using intracranial EEG and stereotactic
EEG. These discussions within the neurological sciences encourages the development
of novel approaches to data analysis and mathematical modelling in order to achieve
subject-precision treatments and prognosis and to further develop our understanding of
state transitions in brain dynamics.

Phase transitions in neural field models have been applied to epilepsy since the 1970s
with the works of Kaczmarek [98] and Kaczmarek and Babloyantz [99], which identified
bifurcation points that give rise to a transition to oscillatory activity in their model.
Bifurcation theory continues to be used to explore potential physiological causes behind
epileptic state transitions. An illustration of how these concepts are broadly applied
is seen in the work of Lopes da Silva [130], which describes the transition between
non-seizure (interictal, steady-state with intrisic fluctuations) dynamics and seizure (ictal,
synchronous oscillations) dynamics via 3 mechanisms acting on a bistability in a neural
field model with comparison to data from subjects with photosensitive epilepsies. A study
by Breakspear et al. [19] does a thorough bifurcation analysis on the cortico-thalamic
neural field model by Robinson et al. and identify regions of the parameter space where
patterns resembling generalised seizures arise. The choice of bifurcation parameter was
motivated by physiological hypotheses, which asserted that the excitatory influence of
cortical pyramidal neurons on the specific thalamic nuclei was responsible for seizure
activity (McCormick and Contreras [142]). Much of the pathological activity seen in
the cortico-thalamic neural field model by Robinson et al. arises from the time delay
between the cortical populations and the thalamic populations. Marten et al. [134]
investigates physiological rationales for the addition of a time delay and identified
the difference in timescales of GABA-A and GABA-B neurotransmitter receptors as the
likely explanation. A variety of dynamical characteristics, such as Hopf bifurcations
and false bifurcations, were identified in physiologically plausible regions of the model
and thus proposes more potential mechanisms for polyspike complexes observed on an
epileptiform EEG recording. In a following publication, Marten et al. [135] convert this
system of delayed differential equations to a system of ordinary differential equations by
using the ‘linear chain trick’ (Smith [190]), which produces equivalent dyanmics to the
original cortico-thalamic neural field model.

The neural mass model by Wendling has also been used to study the generation of
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polyspike events in EEG recordings. A bifurcation analysis by Blenkinsop et al. [15]
connected specific clinical features in EEG recordings to dynamical features present
in the Wendling neural mass model. Contemporary results on generalised epilepies
suggest that temporal evolution of seizures may arise from gradual changes in underlying
physiological mechanisms, which bifurcation theory is well suited for investigating. A
number of Hopf bifurcations, false bifurcations, SNICs and eigenstructure changes are
identified in the neural mass model of Wendling et al., which result in the onset of
polyspike complexes as observed in EEGs of subecjects with epilepsy. These bifurcations
are related to specific features of clinical EEG data by comparison with locally stationary
segments of patient EEGs. It is imperative to note that a number of different pathways
produce the same transitions to epileptic activity, which is critical to be mindful of
when interpreting results from neural field modelling for directing clinical strategies for
epilepsy and other neurological conditions.

An ongoing research effort in neural field modelling attempts to improve our under-
standing of macroscale dynamics by investigating connections with data and models on
the microscale. For example, a study by Eissa et al. [55] investigates the connections
between different spatial scales upon the onset of seizure activity. As simultaneous
recording techniques improve in accuracy and reliability, the mathematical connection
between different scale of modelling can be elucidated. The interplay between global
and local inhibition is examined as another potential physiological mechanism for seizure
onset. Bifurcation analysis of a modified Wilson and Cowan neural field model is used
to describe macroscale dynamics, which can then be identified in the data and related
to physiological aspects through relevant perturbations in parameter values. Another
study by Martinet et al. [137] uses simltaneous microscale and macroscale recordings in
tandem with a Steyn-Ross neural field model to examine mid-seizure dynamics. Guided
by data across multiple scales and neural field modelling, they propose candidates for
physiological mechanisms that lead to the increased coherence during seizures.

Neural field modelling has played a crucial role in demonstrating consequences from
physiological hypotheses on transitions of neural activity states, and continues to further
our understanding of brain state dynamics. However, many of the conclusions and
results of neural field modelling result in hypothetical and theoretical conclusions that
are difficult, if not impossible, to verify due to limitations on experimental neuroscience.
Neural field modelling at this stage is showing more promising outcomes by directing
our focus to particular dynamical structures, such as certain bifurcations, that emerge
from these mathematical frameworks of mean macroscale neural activity. Results from
Kramer et al. [110] illustrates this by identifying a Hopf bifurcation in a neural field
model that presents similar patterns of “slowing” in the mean activity directly before a
seizure as observed in the data. Dynamical pathways for seizure onset and offset and
biophysically realistic explanations are identified from the neural field model used, and
shows concordance between modalities on different spatial scales. This phenomena of
“critical slowing” is another ongoing topic of discussion within epilepsy modelling in
contemporary literature. There are a variety of publications that develop this hypothesis
further, and may provide a method of forecasting critical transitions from recordings of
EEG (Maturana et al. [140]). Overall, identifying bifurcations from data is a promising
direction for neural field modelling. Results from Jirsa et al. [97] utilises an approach
of classifying bifurcations by patterns observed in dynamical transitions and uses this
as a framework for constructing an oscillatory dynamical system that exhibits the
same transitions. Higher order bifurcations are also being analysed and connected to
data (Saggio et al. [182]). Throughout the next Section, we discuss the limitations of
neural field modelling and the prospective phenomenological approaches used in the
contemporary literature.
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5 Discussion and future directions

This review paper on mathematical models of brain dynamics has focused on
population-scale models. Throughout we have highlighted a number of critical the-
oretical developments and the underpinning assumptions necessary to construct neural
field models. Compared to traditional bottom-up approaches, neural field modelling uses
average quantities of populations of neurons instead of properties of individual neurons.
This approach provides an essential balance between biophysical realism and mathe-
matical tractability, however there are some crucial shortcomings and consequences
that warranted a more thorough examination. This was addressed through considering
the historical context, motivations and derivations of neural field models and explicitly
detailing their underpinning mathematical, physiological and anatomical assumptions.
Then a general unifying framework was derived from which, in principle, all neural field
models (and neural mass models) can be constructed and related back to. Following this,
some of the key applications of NFM’s were also explored such as rhythmogenesis, sleep,
and epilepsy. We conclude our review with a brief discussion on the limitations of NFM’s
and by highlighting some recent research directions that provide more biophysically
realistic details whilst maintaining mathematical tractability.

5.1 Limitations of neural field modelling

In order to maintain a balance between biological plausibility and mathematical
tractability when constructing models, compromises are inevitably made and it is essen-
tial these are carefully considered. Whilst many of these assumptions are straightforward
and justifiable, others are more subtle and their validity less clear, especially when they
are not currently experimentally verifiable. This ambiguity leads to issues with interpret-
ing results generated by NFM’s. For example, when brain state transitions are linked to
connectivity parameters.

A theory should be constructed with ‘a clear physical picture of the process’ being
modelled and/or ‘a precise and self-consistent mathematical formalism’ (Dyson [53]).

Unfortunately, the current status of NFM’s permits neither of these. Unlike statistical
physics, there is not yet a precise and self-consistent mathematical framework that links
the microscopic with the macroscopic. In fact, much of the mathematical toolbox from
theoretical physics that is used to deal with complex interacting systems are primarily
for closed equilibrium systems. In contrast, like many biological systems, the brain
is an open non-equilibrium system with scales that are interdependent and not easily
separable.

A primary challenge is the many degrees of freedom that NFM’s have, even with
the use of averaged and lumped parameters. This is often due to lack of data and an
incomplete understanding of the macroscopic structures and processes. The resulting
parameter space is often so large and unconstrained that almost any dynamical behaviour
can be constructed.

As famously quoted by John Von Neumann:

“With four parameters I can fit an elephant, and with five I can make him
wiggle his trunk!" — Dyson [53, p. 297].

This paints an ambiguous physical picture of what is being modelled, as there is often
no direct correspondence between model and experimental parameters. For example,
it is not currently possible to measure the average synaptic connectivity between two
neural populations in the cortex. At best the values used in the literature are order of
magnitude estimates that are currently unverifiable.

Given the lack of a precise mathematical formalism and/or a clear physiological
picture at the macroscopic scale, neural field models could effectively be considered as
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biologically inspired phenomenological models. As observed throughout the applications
outlined in the previous section, the majority of experimental verification is based on a
visual comparison to EEG data. This is partly due to the limitations of our understanding
of the EEG signal, which is also impacted by the disconnect between activities on
different spatial scales. In order for neural field theory to progress from descriptive to
predictive, their hypotheses need to be experimentally validated so that the theoretical
framework can be successively iterated with experimental results. A fundamental goal
for the field then is the generation of testable predictions at the macroscale, similar to
those achieved at the neuronal level with the Hodgkin-Huxley equations. Although these
equations are phenomenologically derived, they are both descriptive and predictive.
This is because the parameters and state variables of the Hodgkin-Huxley model have a
one-one correspondence with those measurable in experiments, providing a predictive
framework for single neuron dynamics. In order for NFM’s to generate novel results
that are reproducible and predictive, a concordance between theory and experiment is
required.

5.2 Future directions

Neural field theory is a very active area of research with many directions being
explored and developed. In this section we present four relatively recent examples:
stochastic approaches which extend NFM’s to have state-dependent stochastic inputs,
random neural networks which studies networked dynamical systems using random
matrix theory, abstracted network models which use more abstract models to understand
functional neuroimaging data and next-generation field models which develop ensemble
solutions that connect the micro and macro-scales.

5.2.1 Stochastic neural field modelling

Stochastic approaches are an active sub-discipline of research within modern neural
field modelling. Complex and chaotic variations in cellular and sub-cellular processes
and interactions across substantially large populations of neurons are more naturally
modelled by a stochastic process, instead of a detailed deterministic description, which
is a theme prevalent across mathematical biology as a whole. The incorporation of
stochastic descriptions can capture additional system interactions due to finite size
effects and variations in parameters, which often leads to models with more elaborate
dynamics at the cost of greater mathematical complexity. In neural field modelling,
stochastic extensions significantly change the previously observed behaviour of solutions
in neural fields, often changing their stability and the propagation of travelling waves
(Bressloff [20, 21], Kilpatrick and Ermentrout [107]). More details on the principles
behind stochastic modelling is found in the works by Bressloff [22] and Faugeras and
Inglis [62].

Stochastic neural fields arise from two approaches: stochastic extensions of exist-
ing neural field frameworks, or population density approaches based on interacting
microscale neuron models (Bressloff [22]). Extensions typically begin with a simpler
neural field framework, such as the Amari field equation (3.5) with one neural population
and a first order temporal kernel. In using one population, the deterministic dynamics
are constrained to exhibiting only the essential dynamics typical of a neural field while
enabling more focus on the impacts of the inclusion of a stochastic term. This approach
results in Langevin-type equations of the form

dU(x, t) =

(
−U(x, t) +

∫
Ω

w(x−X) f [U(X, t)] dX

)
dt+ σ (U(x, t)) dW (x, t), (5.1)
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where U(x, t) represents the mean membrane potential at position x ∈ Ω and time t,
f is the wave-to-pulse transfer function, w is the homogeneous spatial kernel, σ is a
state-dependent diffusion coefficient, and W (x, t) is a canonical Wiener process. Multi-
population extensions are also possible (Lima and Buckwar [126], Bressloff [23]), as
well as stochastic delay differential equation perspectives (Buckwar [28], Riedler and
Buckwar [173], Ableidinger et al. [2]).

Population density approaches to stochastic neural field modelling give a greater
focus on the randomness that arises from variation amongst neurons (Buice and Cowan
[29], Bruice et al. [30], Bressloff [20], Bressloff and Lai [25]). There are a variety of
formulations of this fashion that incorporate randomness arising from synaptic activity in
the form of a point process. With careful analysis, the limiting behaviour can be derived
using various methods, which recovers classical neural field equations with additional
stochastic terms. The continued development of mathematical methods that prioritise
the link between microscale and macroscale activity is essential for resolving issues in
neural field modelling. A detailed discussion of stochastic models in neuroscience is
beyond the scope of this review given the overall richness and complexity underpinning
the mathematical formulation An advantage of models of this nature comes from a
greater reliance on more phenomenological descriptions and thus finding alternate
methods of quantifying and modelling neural activity (Sompolinsky et al. [192], Ostojic
[160], Mastrogiuseppe and Ostojic [139], Ipsen and Peterson [89]). In addition, these
models can be used to explain phenomena arising from finite-size population effects
and the occurrence of large deviations and rare events (Faugeras and Maclaurin [63],
Kuehn and Riedler [112], Bressloff and Newby [26], Lang and Stannat [119]). Stochastic
inputs can be useful for understanding spontaneous state transitions and characteristic
changes in time series statistics in systems close to criticality. For example, a study by
Freyer et al. [75] showed that using a multiplicative state-dependent stochastic process
results in a more realistic model output closer to the structure of experimental EEG
data. Abstractions and stochastic extensions of neural field models can further enhance
the focus of these discussions by giving a closer correspondence between experimental
data and mathematical structure, allowing for more data-driven approaches (Kalitzin et
al. [100], Benjamin et al. [11], Schmidt et al. [184]).

5.2.2 Random neural network models

In describing the dynamics of large nonlinear networks of neurons, another important
mathematical approach is the study of random neural networks (Stern et al. [194]). In-
stead of using a continuous spatial kernel to describe the connectivity between neurons,
a matrix operator with a discrete topology can be used. This weight matrix connects
neural mass models and is mathematically equivalent to a neural field model with a
discretised field. This approach treats the dynamics of neural networks as a directed
graph dynamical system composed of N first-order neural mass models with instanta-
neous synapses that are nonlinearly coupled via a random connectivity matrix W . The
connectivity weights, which are the elements of W are chosen from identically and
independently distributed (IID) random variables such as a normal distribution with
mean µ and variance σ. The dynamics of the i-th node is given by

ẋi = −xi
τ

+

N∑
j=1

wi,j φ(xj), (5.2)

where the state variable xi represents the average membrane potential of the i-th neural
population, τ is the membrane time-constant, wi,j is the synaptic weight from population
j to population i and constitutes a single entry in the N ×N connectivity matrix W , and
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φ(xj) is a nonlinear coupling function, similar to a wave-to-pulse transfer function in
typical neural field models.

As N becomes large, it is not mathematically tractable (due to nested nonlinear
coupling functions) to compute the fixed points and linearise the system around them to
quantify the local stability, as is typically performed with dynamical systems. To avoid
these complications, random matrix theory (RMT) is used to compute the statistical
properties of the eigenspectrum from the statistics of the connectivity matrix via the
circular law (Tao et al. [198]). This analyses establishes an examinable mathematical
relationship between the network connectivity structure and phase transitions of the
system. This work was originally pioneered in neural networks by Sompolinsky et
al. [192] using dynamical mean-field techniques from spin glass models. However,
computations of phase transitions in large nonlinear networked systems can be traced
back to the work of May [141] from theoretical ecology who demonstrated that the larger
a system becomes, the more unstable it also becomes, which is known as a May-Wigner
transition (Ipsen [88]).

In such a networked system of the type shown in Equation (5.2), it was found that the
system undergoes a phase transition into a ‘chaotic’ like state with highly fluctuating
and complex dynamics (Stern et al. [194]), where the order parameter is in fact the
variance of the connectivity matrix. The microscopic mechanisms underlying this phase
transition have also been mathematically examined (Wainrib and Touboul [212]) and
it was found that there is an explosion from a single or simple set of fixed points to
an exponential increase in the number of fixed points. The phase transition can be
computed approximately using a Kac-Rice formalism that counts the number of fixed
points. However, these results are based on networks with a single randomly connected
population drawn from an IID which is not anatomically realistic.

Rajan and Abbott [167] demonstrated that when a more anatomically realistic con-
nectivity in the form of Dale’s law is added there is a significant change in the nature
of the phase transition. Dale’s law states that excitatory (inhibitory) neurons can only
give excitatory (inhibitory) signals (Eccles et al. [54]). This introduces non-random
structure that makes the connectivity matrix entries no longer identically distributed
and only partially random, as matrix columns corresponding to the excitatory (inhibitory)
elements are positive (negative) entries. The matrix entries for different populations are
drawn from different distributions with their own means, variances and proportions with
respect to each other e.g. no. of excitatory vs no. of inhibitory. This consequently alters
where and how rapidly the phase transition takes place in parameter space. An example
“two-population” connectivity matrix is shown in Figure 10 (a). Further, because of the
different variances of the populations, the eigenspectrum computed from the circular
law is no longer of uniform density (Rajan and Abbott [167]), as seen in Figure 10 (b).
The non-random connectivity of Dale’s law was also recently incorporated into a Kac-Rice
formalism by Ipsen and Peterson [89] to study the effects it has on the microscopic mech-
anism of the phase transition. The location of the phase transition critically depended
on the different connectivity parameters of the different neural populations. Such a
technique enables mathematical investigations to be performed between the network
connectivity and network dynamics that would not be possible using standard techniques
from classical dynamical systems.

Another technique that can be employed in networked dynamical systems that are
coupled via heterogeneous matrices is Dynamical Mean-field theory (DMF). In this
approach, a many-body deterministic problem is approximated and reduced to a one-
body stochastic system. For example, the coupling term in Equation (5.2) is replaced by
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Figure 10: Instance of a random two-population neural network model. (a) Heat
map of random connectivity matrix. The block structure of the connectivity matrix
incorporating Dale’s law with positive excitatory weights we and negative inhibitory
weights wi can be seen. (b) Eigenspectrum of connectivity matrix, showing a compact
circular support that is non-uniform in density due to Dale’s law (Rajan and Abbott [167])
and a pair of unstable eigenvalues. (c) Simulation of networked system. The unstable
eigenvalues cause a phase transition as can be seen in simulations, which shows the
firing rate activity of individual nodes over time.

a stationary Gaussian stochastic process η,

ẋi = −xi
τ

+ η(t). (5.3)

The individual trajectories xi are now stochastic processes, which in the limit of a large
network become uncorrelated and statistically equivalent (Ostojic [160]), so that the
network dynamics can be effectively described by a single process. The first and second
order moments of the network activity can be non-trivially computed for certain cases
and are strongly dependent on the network parameters. This enables us to investigate
the relationship between the statistics (first two moments) of the activity and the network
structure.

5.2.3 Abstracted networked models

Recordings from the brain (e.g. EEG) are effectively a spatially discrete representation
of its activity. Rather than consider spatial kernels that are continuous, more recent
approaches have utilised coupled neural mass models to create so-called network dy-
namic models. Effectively, this is conceptually equivalent to a neural field model with
a discretised neural field. Each channel of an EEG measures bulk neuronal activity
across centimetres, and neural mass models target the same level of description. Recent
developments investigate the coupling of EEG channels by using this approach, providing
an illustration of new methods of investigating spatial dependence of neural activity and
seizure dynamics (Carvallo et al. [36], Ersöz et al. [109]). An example of this in the work
of Goodfellow et al. [79], where intracranial EEG is modelled using a neural field model
comprised of coupled neural mass models (each corresponding to an EEG channel). This
framework allowed for the inference of a discrete spatial kernel based on measured EEG
channel correlations during seizure events, and was used to direct surgical strategies
in severe cases of epilepsy. A further development on this work by Lopes et al. [128]
simplifies the neural mass model at each channel to a canonical normal form model
containing the SNIC bifurcation responsible for epileptic transitions.
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Networked dynamical systems have been prevalent in recent literature outside of
neural field theory as well, such is as the works of Kalitzin et al. [100], Benjamin et al. [11],
Ashwin et al. [8] and Woldman et al. [219]. These more abstracted approaches employ a
more direct top-down approach and aim to model the properties or features of the data
rather than the underlying physical processes, which remains mostly inaccessible given
the current state of technology. An example of an abstracted networked dynamical system
for neurosurgical planning in cases of severe epilepsy is given in Jirsa et al. [97], who
constructed a coupled oscillator (called the “Epileptor”) based on a set of bifurcations
that can give rise to the onset and off-set of seizures as recorded in EEG. A saddle-
node/homoclinic bifurcation pair is used to describe the majority of seizure-like events
based on frequency and amplitude scaling and direct current (DC) shifts upon a state
transition. The fast oscillator is based on a system proposed by Hindmarsh et al. [86]
whereas the slow oscillator is based on a system proposed by Roy et al. [180]. The
coupling between these oscillators is mediated by an ultraslow “permittivity” variable,
linear inhibitory coupling from the slow to fast subsystem, and low-pass filtered excitatory
coupling from the fast to slow subsystem. The equations describing this model are shown
below:

ẋ = y − f1(x, u, z)− z + I1,

ẏ = 1− 5x2 − y,

ż =
1

τ0
(4(x− x0)− z),

u̇ = −v + u− u3 + I2 + 0.002g(x)− 0.3(z − 3.5),

v̇ =
1

τ2
(−v + f2(x, u)),

(5.4)

where x and u are driven by independent white noise processes with standard deviation
0.025, x0 = −1.6, τ0 = 2857, τ2 = 10, I1 = 3.1, I2 = 0.45, γ = 0.01, and

f1(x, u, z) =

{
x3 − 3x2, x < 0,

x(u− 0.6(z − 4)2), x ≥ 0,

f2(x, u) =

{
0, u < 0.25,

6x(u+ 1
4 ), u ≥ 0.25,

g(x) =

∫ t

t0

eγ(t−s)x(s)ds.

(5.5)

The parameters and construction of the Epileptor is phenomenologically motivated,
however the dynamical landscape captures a great deal of detail of state transitions
that are observed on EEG (Saggio et al. [181]). It should be noted that there are
ongoing efforts to identify relations between the model parameters and underlying
neurophysiology (Chizhov et al. [37]). The Epileptor is used as a constituent of the
networked dynamical system of brain dynamics, called The “Virtual Epilepsy Patient”,
by Jirsa et al. [94]. Each Epileptor node represents a different brain region, and
connectivity between nodes in the model is inferred from stereo-EEG data. Despite
the lack of identifiable parameters from neuronal activities, the framework presented
maintains a close relationship with higher levels of neurological data recording, such
as EEG and MEG techniques. A top-down focus may lead to new discoveries in the
dynamics of brain state transitions that were previously unidentifiable with classical
approaches to mean field modelling.

Another application that utilised abstracted networked dynamical systems is in
epilepsy diagnosis and the work of Schmidt et al. [184] and Woldman et al. [220],
which investigates correlations between EEG channels in resting state as a potential
marker for epilepsy using an abstracted multi-level Kuramoto model [114, 113]. These
authors use a multi-level Kuramoto approach in modelling emergent synchronisation
from resting state EEG. Consider P populations of oscillators, where each population
p ∈ {1, · · · , P} contains N Kuramoto oscillators, each with a natural frequency drawn
from a population-specific distribution gp(ω). We introduce a P × P coupling matrix
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ρ, with entries ρp,q describing the interactions between populations. These entries
may be binary or represent a weighted network. Let C and Kp be the global coupling
parameter and the local coupling parameters. The evolution of oscillator j ∈ {1, · · · , N}
in population p ∈ {1, · · · , P} is given by,

dθpj
dt

= ωpj +
Kp

N

N∑
k=1

sin(θpk − θ
p
j ) + C

P∑
q=1

ρp,q
N

N∑
k=1

sin(θqk − θ
p
j ). (5.6)

In this modular network, synchronisation can emerge locally within a single population
as well as across the global network. This was proposed as a model of EEG activity
generated by the cortical columns in the study by Schmidt et al. [183]. The degree of
synchrony in the individual nodes is measured using the same order parameters as for
the simple Kuramoto model, rpeiψp = 1

N

∑N
j=1 e

iθpj , and global coupling can be quantified

by the absolute mean of these constituent order parameters, rg =
∣∣∣ 1
P

∑P
p=1 rpe

iψp

∣∣∣. In this

context, the non-synchronised incoherent state in the Kuramoto formulation corresponds
to healthy background activity observed in EEG, whereas emergent synchronous activity
across the network is taken as a proxy for epileptiform activity. As with the Epileptor,
this phenomenological framework is based on the oscillatory dynamics observed in
high-level descriptions of neural activity rather than emergent properties of large neural
networks, unlike the next generation of neural field models. The abstracted nature of
these models may provide more accessible options for identifying models to clinical data,
rather than explaining physiological mechanisms of neural tissue. For further details on
the principles of oscillator models in neuroscience, we refer the reader to the review by
Ashwin et al. [7].

5.2.4 Next-generation neural field modelling

Recently, a “next-generation” approach to neural field modelling has emerged, which
is derived from microscopic principles (Coombes and Byrne [40]). This recent sub-
discipline of mathematical neuroscience re-imagines the principles of neural population
models, deriving macroscale states and parameters from the thermodynamic limit of
the well-established quadratic integrate-and-fire model. Using the work of Byrne et
al. [34], we can give a brief overview of the modelling principle used and the derivation
of the model, which is based on the work of Luke et al. [131] and Montbrió et al. [148].
Consider N neurons equally spaced across a one-dimensional domain Ω. The quadratic
integrate-and-fire model is given by

dui
dt

= u2
i + ηi +

∑
m

gim(t) [urev
m − ui] , (5.7)

where ui represents the membrane potential of neuron i, ηi is a background input to
neuron i, urev

m is the reversal potential of synapse group m, and gm is the conductance
of synapse group m. A Lorentz distribution is chosen for ηi, since this allows exact
evaluation of the integrals that follow in this derivation. Note that so far in this model the
connectivity between neurons is all to all and the population is purely excitatory. A reset
condition is also imposed on each equation, so that the membrane potential ui is set to
a resent potential ur whenever the ui reaches a threshold potential uth. Using results
from Ermentrout and Kopell [59], the membrane potential state variables of quadratic
integrate-and-fire model can be transformed to phase state variables of the theta model
(using ui = tan(θi/2)), given by

dθi
dt

= 1− cos(θi) + (1 + cos(θi))ηi +
∑
m

gim(t) [(1 + cos(θi))u
rev
m − sin(θi)] , (5.8)
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Each conductance is influenced by inputs from other neurons, as we have seen in
classical neural field modelling,(

1 + τm
∂

∂t

)2

gim(t) =
2κm
N

N∑
j=1

wm(xi − xj) δ(θj − π), (5.9)

where τm is the synaptic time constant, κm is the global coupling strength of synapse m,
wm(xi − xj) is the homogeneous spatial kernel that depends on the distance between
neuron i and neuron j. Taking the thermodynamic limit of the system of neurons and
letting N → ∞, it can be established that the state of the mean field of a system
of coupled oscillators can be described by a probability density function ρ(x, η, θ, t)

that obeys the continuity equation (Landau and Lifshitz [118], Kuramoto [114, 113],
Lancellotti [117]), which can be used to derive the partial differential equation,(

1 + τm
∂

∂t

)2

gm(t) =
κm
π

∑
l

∫
Ω

∫ 2π

0

wm(x− y) eilθ
{∫ ∞
−∞

ρ(y, η, θ, t) dη

}
dθ dy. (5.10)

This system can be simplified by using the Ott-Antonsen ansatz [161] by restricting the
form of ρ to a product of factors L(η) and

∑
n α(x, η, t)neinθ. This can be used to derive a

new expression of ρ and another partial differential equation for α. In addition to this, a
Kuramoto order parameter is defined for the mean field,

z(x, t) =

∫ 2π

0

∫ ∞
−∞

ρ(x, η, θ, t) eiθ dη dθ. (5.11)

These results are used to transform Equation (5.10) as(
1 + τm

∂

∂t

)2

gm(t) = κm

∫
Ω

wm(x− y) f [z(y, t)] dy, f(z) =
1

π

1− |z|2

|1 + z|2
, (5.12)

giving us the form of a classical neural field model, where f is a real-valued function that
depends on the complex-valued population synchrony measure z, which if analogous
to the wave-to-pulse transfer function of classical neural field models. With further
computation, a differential equation for z can also be derived, which completes the
derivation of the next-generation neural field model.

Here we only give a surface-level overview of the principles and equations involved,
an in-depth review can be found in the works of Coombes and Byrne [40] and Bick et
al. [14]. Although this approach is relatively new, it has already been applied to problems
in rhythmogenesis (Byrne et al. [35], Keeley et al. [104], Taher et al. [197], Segneri
et al. [185]), synchronisation of neural activity (Luke et al. [131]), and propagation of
epileptic seizures (Gerster et al. [76]). Furthermore, this framework can also be extended
readily to include neural connectivity via gap junctions (Laing [116]) and multiple neural
populations (Segneri et al. [185]), which alters the dynamical landscape significantly.

This new branch of neural field modelling is readily adaptable to many methods
of modern statistical mechanics and brings a significant step forward on connecting
microscopic dynamics to macroscopic dynamics.

5.3 Concluding remarks

Despite their limitations, neural field models remain the most descriptively accurate
models of both normal and abnormal brain dynamics such as those observed in EEG
data. They are relatively low dimensional, computationally inexpensive to simulate and
can be constructed within an analytical framework. This framework facilitates rigorous
mathematical analysis that enables us to carefully map and explain the models behaviour.
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The parameters of the model, even in the absence of a one to one correspondence with
experimental measures, can then be interpreted in a physiologically and anatomically
meaningful way. We again reiterate the importance of transparency of the underpinning
assumptions needed to construct neural field models, in order to enable careful and
meaningful interpretation of the results. This is essential for future developments that
aim to address the limitations of neural field theory. Most importantly, the evolution of
this type of modelling in parallel with neuroscience experiments and technology means
that they are capable of generating testable hypotheses that can be experimentally
verified. This gives them the potential to be not only predictive, but to also have
significant explanatory power that elucidates some of the unknown mechanisms behind
brain function and dysfunction.
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