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Mean field system of a two-layer neural model in a
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Abstract

We study a model of interacting neurons. This neural system is composed of two layers
of neurons such that the neurons of the first layer send their spikes to the neurons of
the second one: if N is the number of neurons of the first layer, at each spiking time
of the first layer, every neuron of both layers receives an amount of potential of the
form U/

√
N, where U is a centered random variable. This kind of structure of neurons

can model a part of the structure of the visual cortex: the first layer represents the
primary visual cortex V1 and the second one the visual area V2. The model consists of
two stochastic processes, one modelling the membrane potential of the neurons of the
first layer, and the other the membrane potential of the neurons of the second one. We
prove the convergence of these processes as the number of neurons N goes to infinity
and obtain a convergence speed. The proofs rely on similar arguments as those used
in [17]: the convergence speed of the semigroups of the processes is obtained from
the convergence speed of their infinitesimal generators using a Trotter-Kato formula,
and from the regularity of the limit semigroup.
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1 Introduction

1.1 Model

The model we study in this paper is a mean-field model of interacting neurons. Such
models have been studied widely in the literature to model the dynamics of neural
networks (see e.g. [20, 2, 32, 10] and the references therein). A natural way of modelling
the activity of the neurons is to use point processes to represent their spike trains. In this
context, Hawkes processes have called attention as a natural model for the spike trains
of neurons. These processes have been introduced in [24] to model the aftershocks of
earthquakes. By definition, Hawkes processes are mutually exciting point processes,
therefore they can be naturally used to model the mutually exciting/inhibiting behavior of
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Two-layer neural model

neurons (see [35, 22, 36]). Some authors have also managed to model the repolarization
of the neurons using Hawkes processes with variable length memory (see [21, 25, 14]).
Finally "age dependent Hawkes processes" introduced in [7] and further studied in [8, 5]
can be used to make the spike rate of a neuron depend on the delay since its last spike,
allowing to consider for example a refractory period for the neurons.

This paper aims to study a model of two layers of neurons such that:

• the neurons of the first layer send their spikes to the neurons of both the first and
second layers,

• the spikes of the neurons of the second layer do not affect these two layers.

We note N the number of neurons of the first layer. The idea of our modelling is to
study the "averaged effect" of the first layer on a single neuron of the second one. In the
following, we model this averaged effect through the averaged value of the membrane
potentials of the neurons of the first layer. Let us note XN

t the averaged value of these
potential at time t, and Y Nt the membrane potential of one particular neuron of the
second layer at time t.

We assume that the dynamics of the processes XN and Y N are given by the following
SDEs:

XN
t =XN

0 − α1

∫ t

0

XN
s ds+

1√
N

N∑
j=1

∫
[0,t]×R+×R

u · 1{z≤f1(XN
s−)}dπ

(1),j(s, z, u) (1.1)

− 1

N

N∑
j=1

∫
[0,t]×R+×R

XN
s−1{z≤f1(XN

s−)}dπ
(1),j(s, z, u),

Y Nt =Y N0 − α2

∫ t

0

Y Ns ds+
1√
N

N∑
j=1

∫
[0,t]×R+×R

u · 1{z≤f1(XN
s−)}dπ

(1),j(s, z, u)

−
∫

[0,t]×R+

Y Ns−1{z≤f2(Y N
s−)}dπ

(2)(s, z),

where XN
t− (resp. Y Nt−) denotes the limit from the left of XN (resp. Y N ) at time t. Above,

α1, α2 are positive parameters (resp. f1, f2 are non-negative functions) of the model that
represent the leakage rate characteristics (resp. the spike rate functions) of respectively
the neurons of the first layer and the neurons of the second one. In (1.1), π(1),j are i.i.d.
Poisson measures with intensity ds · dz · dν(u) (ν is a centered probability measure on R),
and π(2) a Poisson measure with Lebesgue intensity independent of the other Poisson
measures.

Remark 1.1. Note that it is possible to rewrite equation (1.1) in a more compact form:

XN
t =XN

0 − α1

∫ t

0

XN
s ds+

1√
N

∫
[0,t]×R+×R

u · 1{z≤f1(XN
s−)}dπ

(1)(s, z, u)

− 1

N

∫
[0,t]×R+×R

XN
s−1{z≤f1(XN

s−)}dπ
(1)(s, z, u),

Y Nt =Y N0 − α2

∫ t

0

Y Ns ds+
1√
N

∫
[0,t]×R+×R

u · 1{z≤f1(XN
s−)}dπ

(1)(s, z, u)

−
∫

[0,t]×R+

Y Ns−1{z≤f2(Y N
s−)}dπ

(2)(s, z),

where π(1) is a Poisson measure with intensity N · ds · dz · dν(u). It is formally possible
to define π(1) as the union of the π(1),j (1 ≤ j ≤ N ). In the rest of the paper, we use the
form (1.1) because it is more understandable for the model.
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In (1.1), the counting processes

P
(1),N,i
t :=

∫
[0,t]×R+×R

1{z≤f1(XN
s−)}dπ

(1),i(s, z, u), 1 ≤ i ≤ N,

and

P
(2),N
t :=

∫
[0,t]×R+

1{z≤f2(XN
s−)}dπ

(2)(s, z),

model respectively the spike trains of the neuron i of the first layer (1 ≤ i ≤ N ) and that
of the particular neuron of the second one. In this model, the form of the synaptic weights
is u/

√
N where u is the third variable of the Poisson measures π(1),i (1 ≤ i ≤ N ). These

variables can be seen as random variables that are i.i.d. ν−distributed, and whence
centered. Note that it is necessary to consider centered synaptic weights because of the
normalization N−1/2, and in order to make appear these centered variables u, we need
to write the point processes P (1),N,i as thinnings of Poisson measures in (1.1).

Let us explain in other words the dynamics of the equations (1.1). The second term
of both SDEs describes the effect of the spikes of the neurons of the first layer on
both layers. The last term in the SDE of Y N (i.e. the fourth line of (1.1)) models the
repolarization of the potential of the particular neuron of the second layer: right after
the neuron emits a spike, its potential goes fast (here it jumps immediately) to its resting
value that we assume to be zero. The last term of the SDE of XN (i.e. the second line
of (1.1)) should be interpreted as an averaged repolarization. Indeed, the neurons of
the first layers fire at rate N · f1(XN

t−). So XN
t should be interpreted as the averaged

potential of the neurons of the first layer. And, according to our model, when a neuron
of the first layer sends a spike, its potential should jump to zero. As a consequence, if we
assume that this potential was "close" to the averaged value XN

t− before the jump, then,
right after the spike, the quantity lost by the averaged potential is N−1XN

t−.

The reason why we only consider the effect of the first layer of neurons through their
averaged potential XN is to guarantee our model (XN , Y N ) to be two-dimensional, and
not (N + 1)−dimensional. In this second frame, the technics used in the proofs would
fail. This if for the same reason that we assume our neural networks to be complete
graphs, since it implies that the dynamics of all the neurons are similar.

The main result of this paper (Theorem 1.5) is the convergence in distribution
as N goes to infinity (with an explicit convergence speed) of the sequence of the
two-dimensional Markov processes (XN , Y N )N (defined in (1.1)) to the following limit
process

X̄t =X̄0 − α1

∫ t

0

X̄sds+ σ

∫ t

0

√
f1(X̄s)dWs −

∫ t

0

X̄sf1(X̄s)ds, (1.2)

Ȳt =Ȳ0 − α2

∫ t

0

Ȳsds+ σ

∫ t

0

√
f1(X̄s)dWs −

∫
[0,t]×R+

Ȳs−1{z≤f2(Ȳs−)}dπ̄(s, z),

where W is a standard one-dimensional Brownian motion, π̄ is a Poisson measure on
R2

+ with Lebesgue intensity independent of W , and σ2 is the variance of the probability
measure ν.

Remark 1.2. Note that Theorem 1.5 has a practical interest if one wants to simulate the
trajectories of the process (XN , Y N ). According to this result, the limit process (X̄, Ȳ ) is
an approximation of (XN , Y N ), and it is easier to simulate. Indeed, to simulate (XN , Y N )

one has to compute the trajectories of the N Poisson measures π(1),i (1 ≤ i ≤ N ), which
can be computationally hard if N is large. So it can be easier to simulate a single
Brownian motion W instead of those Poisson measures.

Then, if we simulate the limit process (X̄, Ȳ ) instead of the "real" one (XN , Y N )

(i.e. the one that actually corresponds to the neural model), we make an error. The
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interesting point of Theorem 1.5 is to quantify this error (i.e. the convergence speed).
Let us mention that this error is of order N−1/2, which can be considered "small" if the
first layer represents for example the primary visual cortex V1, since the number of
neurons N in V1 is estimated to be of order 108 according to [30].

1.2 Biological motivation

This multi-layers structure is a natural model for the visual cortex, which is composed
of five interacting and functionally distinct layers of neurons (see Chapter 5 of [26] for a
detailed description of the structure of the visual cortex). The two-layer model of this
paper can be seen as a model of the primary visual cortex V1 (the first layer) and the
visual area V2 (the second layer). A more interesting model could consist in considering
five layers to represent V1-V5 and more complex interactions between these layers. As
we have mentioned earlier, to simplify the model we only consider an averaged potential
XN for the neurons of the first layer. We also assume that all the neurons of the second
layer have the same dynamics, and that is why we just study one particular neuron of
the second layer.

In our model, we assume our first layer to be a complete graph (i.e. each neuron is
connected by a synapse to any other neuron). As it is explained above, this property
is important in our proofs, but it is a drawback of the biological model since a neuron
has only a limited number of synaptic connections compared to the number of neurons
of the network. It is possible to extend this model to the case where the first layer is
divided into a fix number k of sublayers. In this case, each sublayer has to be assumed
to be a complete graph and one can consider any interaction structure between the
sublayers. In this new model, assuming that the number k of sublayers does not depend
on N , the results of the paper would hold true, and the techniques used to prove the
results would be the same (the main difference is that XN would be a k−dimensional
process instead of an one-dimensional one). This model may be interesting to model the
six functionally distinct layers of V1, and even the four sublayers of the fourth one of
V1 (i.e. taking k = 9) (see e.g. Chapter 5 of [26]). In order to ease the readability of the
proofs, we prefer not to study the "multi-sublayers model". Let us also mention that for
similar reasons, it is possible to extend our model to study a fix number of neurons of
the second layer and not only one (provided that this number does not depend on N ).

Let us end this section by commenting the form of the synaptic weights u/
√
N where

the u are random variables. These centered synaptic weights model the fact that we
consider "balanced networks" (i.e. neural networks where the excitatory inputs and the
inhibitory ones are balanced). Experiments support this hypothesis of balanced synaptic
connections as a natural model (see [38, 23] and the references therein). Let us also
mention that, the experiments done in [4] support the assumptions that the order of
magnitude of the synaptic weights is close to the theoretical value (i.e. the square root
of the number of presynaptic neurons, since the interactions are balanced), which is

√
N

with our assumptions.

1.3 Mathematical techniques

Let us give a brief overview of the mathematical studies of balanced network: [19]
have proved a large deviation principle for a discrete-time model with correlated synaptic
weights, in [39] the authors have studied a continuous-time model of ODEs parametrized
by random synaptic weights where at the limit a Gaussian field is created by these
weights, [37] have studied the exsitence of a balanced state for the large scale limit
of a similar model, and [34] have proved the convergence of Hawkes processes in
distribution to a limit process that is solution to a stochastic convolution equation (also
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known as stochastic Volterra equation of convolution type). The form of the model of
[34] is close to the one we consider here. In these papers, the synaptic weight of a given
synapse is a random variable and each time a neuron sends a spike to another neuron,
the potential of this other neuron always receives the same random variable from this
synapse. In our model (similarly as in [17, 14]), at each spiking time, we make a choice
of random synaptic weight independently of the previous ones. This implies that the
role of a synapse (i.e. excitatory or inhibitory) can change. This property is inconsistent
with biological evidence, but compared to the model of [34], it allows us to obtain a
convergence speed in addition to the convergence in distribution of the model, and it
also allows us to consider more general distributions than just Rademacher distribution
for the law of the synaptic weights.

Let us also note that this kind of multi-layers model has already been studied in
[11] and at Section 5 of [15]. In both these references, the number of layers is not
limited to two (but does not depend on N ) and every membrane potential is modeled
by a specific process without the "repolarization" effect in the equations. Consequently
the dimension of the N−neurons model is N , and as we have claimed previously, the
techniques of this paper would not work on these models. In [11], the authors have
obtained a L1−convergence with a convergence speed in N−1/2. The processes they
have studied are Hawkes processes and the order of synaptic weight is N−1. The model
in [15] is closer to (1.1) since the synaptic weight is also centered and of order N−1/2.

The advantage of the model of the current paper is that we obtain a convergence speed
of order N−1/2 whereas in [15], we have just proved a convergence in distribution
and in [16] (where the results hold true in a multi-layers framework) the order of the
convergence speed is N−1/10. Note that it is interesting to have a good convergence
speed for simulation purpose (see Remark 1.2).

The question of the convergence of system with this kind of repolarization effect has
already been studied previously (in a one-layer framework): see [10, 1, 13] for models
with synaptic weights of order N−1, and [14] for synaptic weights of order N−1/2. The
novelty of this article consists in obtaining a convergence speed for the convergence in
distribution where the order of the synaptic weights is N−1/2.

We can also remark that (1.1) is a generalization of the model of [17] where we have
studied the convergence of the one-dimensional process XN in a simplified framework
(i.e. without the last term in the SDE of XN ). The interesting points of the model of
this paper is that it is more relevant for the modelling of a particular structure of neural
network (e.g. the layers V1 and V2 of the virtual cortex), and that we can still prove
similar results.

In order to quantify the convergence speed of the distribution of (XN , Y N ) to the
distribution of (X̄, Ȳ ), we rely on their semigroups, respectively denoted by (PNt )t and
(P̄t)t. By definition the semigroups are families of operators that can be defined on
the space of continuous and bounded functions by the following: for g continuous and
bounded, and x, y ∈ R,

PNt g(x, y) := E(x,y)

[
g(XN

t , Y
N
t )
]
,

where E(x,y) is the expectation related to the probability measure P(x,y) under which
the initial value of the process (XN , Y N ) is given by the deterministic value (x, y) =

(XN
0 , Y

N
0 ).

To obtain this convergence speed, we use similar arguments as in [17]. We consider
the infinitesimal generators AN and Ā of respectively PN and P̄ . These infinitesimal
generators are operators that can be defined as the derivatives of their respective
semigroups:

ANg(x, y) = lim
t→0

1

t

(
PNt g(x, y)− g(x, y)

)
.
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The notion of generators can slightly differ from a reference to another for technical
reasons. This is why we define precisely the notion that we use in this paper at the
beginning of Section 2.1 (it is the same notion that we have introduced and studied in
Appendix A of [17]).

We begin by proving the convergence of these generators and by obtaining a conver-
gence speed. This convergence speed depends on the derivatives of the test-function g.
Then, we deduce a convergence speed for the semigroups using the following formula:

P̄tg(x, y)− PNt g(x, y) =

∫ t

0

PNt−s
(
Ā−AN

)
P̄sg(x, y)ds.

This kind of techniques used to obtain the convergence of the semigroups from the
convergence of the generators are similar to the results of the Section 1.6 of [18]. In
particular, the formula above is proved in Lemma 1.6.2 of [18] with stronger assumptions
on the generators compared to the result of this paper and [17].

To be able to use (2.1) to deduce a convergence speed for the semigroups from
the one for the generators, we need to control the differentiability of the function
(x, y) 7→ P̄sg(x, y). So, one of the main step of the proof of our main result consists in
studying the regularity of the limit semigroup (P̄t)t. For this purpose, we need to study
the regularity of the related stochastic flow (see Section 1.4 for the notion of stochastic
flow). Compared to the proofs of [17], there are two additional technical difficulties that
we handle at Section 2.2:

• The trajectories of the process (X̄, Ȳ ) are not continuous. Whence, the regularity
of its semigroup is harder to study.

• The jump times of the process (X̄, Ȳ ) occur at the rate f2(Ȳt−). This implies that
this rate depends on the initial condition of the process. The regularity of this
dependency is hard to study directly.

To overcome the first point, we study the regularity of the stochastic flow between
the jump times (see Proposition 2.7). Let us remark that [3] have already used the
idea of working between the jump times of the flow to study its regularity and that
of its semigroup. For the second point, we introduce an auxiliary limit process (X̃, Ỹ )

for which the rate of the jumps is constant. Then, we deduce the regularity of the
semigroup (P̄t)t from the regularity of the flow of (X̃, Ỹ ) using Girsanov’s theorem for
jump processes that gives the explicit Radon-Nikodym derivative between the processes
(X̄, Ȳ ) and (X̃, Ỹ ) (see Proposition 2.4).

1.4 Notation

Throughout the paper, we use the following notation:

• For n, d ∈ N∗, we note Cnb (Rd) the set of R−valued functions defined on Rd that are
Cn, bounded and such that all their partial derivatives up to order n are bounded.

• We call β ∈ N2 a multi-index and we note |β| = β1 + β2. If g : R2 → R is Cn and if β
is a multi-index such that |β| ≤ n, we write ∂βg the partial derivative of g w.r.t. β.
For the first order partial derivatives, we write instead ∂1g and ∂2g, and for the
second order derivatives, we write ∂2

i,jg (i, j ∈ {1, 2}). When there is no possible
confusion, we may use the classical notation ∂xg(x, y) = ∂1g(x, y).

• For g ∈ Cnb (R2), we note

||g||n,∞ =
∑
|β|≤n

||∂βg||∞.
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• Given a process X (resp. a multi-dimensional process (X,Y )) that is solution to
some SDE, we note X(x) (resp. (X(x,y), Y (x,y))) the process solution to the SDE w.r.t.
the initial condition X0 = x (resp. (X0, Y0) = (x, y)). The function x 7→ X(x) (resp.
(x, y) 7→ (X(x,y), Y (x,y))) is called the stochastic flow of the process X (resp. (X,Y )).
By definition, a stochastic flow of a Markov process represents its trajectories as
functions of its initial condition (see Definition 1.1.1 of [29] for a more general
definition). In this paper, we speak about stochastic flow instead of the trajectories
of the process itself when we want to emphasize the fact that it is a function of the
initial value, and to use the same terminology as [29].

• In all the paper, C denotes an arbitrary positive constant that is independent of any
parameters except the parameters of the model. If a constant depends on some
parameter θ, we write Cθ instead. The value of such constants can change from
line to line in an equation.

1.5 Assumptions and main result

To begin with, let us state the conditions we need to study the model.

Assumptions 1.3.

(i) The function f1 is C1
b (R), positive, and, for some constant C > 0, for any x ≥ 0,

|f ′1(x)| ≤ C/(1 + |x|),
(ii) the function f2 is non-negative and belongs to C3

b (R),
(iii) the function

√
f1 belongs to C4

b (R),
(iv) the probability measure ν is centered and admits a finite third moment. We note

σ2 its variance.

Remark 1.4. Any sigmoid function satisfies the conditions imposed by Assump. 1.3.(i)−
(iii) on the functions f1 and f2. This kind of function has been shown to be natural for
neural models (see [40]).

Under Assumption 1.3.(i)− (ii), the strong well-posedness of the SDEs (1.1) and (1.2)
is a classical result since these two conditions guarantee that the coefficients are
Lipschitz continuous and the jump rates bounded (see Theorem IV.9.1 of [27]).

The boundedness of f1 and the assumption on f ′1 are used to prove the well-posedness
of the limit process (1.2) and to simplify some technical details, since it implies that
the function x 7→ xf1(x) is Lipschitz continuous. On the other hand, the boundedness
of f2 is important to control the Radon-Nikodym derivative of the limit process (X̄, Ȳ )

with respect to the auxiliary process (X̃, Ỹ ) that we introduce at Section 2.2 (see
Proposition 2.4 for the form of this derivative).

Condition (iii) allows to prove that the stochastic flow of the auxiliary process is C3

between its jump times (see Proposition 2.6). And condition (iv) allows us to obtain a
convergence speed for the generators (see Lemma 2.3).

Under the additional assumption that (XN
0 , Y

N
0 ) converges in distribution to (X̄0, Ȳ0),

it is known that the process (XN , Y N ) converges in distribution to (X̄, Ȳ ) in Skorokhod
topology (see Theorem IX.4.21 of [28]). The main result of this paper consists in obtaining
the convergence speed of the semigroups PN to the semigroup P̄ of these processes
(recalling that the processes (XN , Y N ) and (X̄, Ȳ ) are defined respectively at (1.1)
and (1.2), and that a semigroup can be defined as PNt g(x, y) := E[g(XN

t , Y
N
t )|(XN

0 , Y
N
0 ) =

(x, y)]).

Theorem 1.5. Grant Assumptions 1.3.(i)− (iv). For all t ≥ 0, N ∈ N∗, g ∈ C3
b (R2) and

x, y ∈ R,∣∣P̄tg(x, y)− PNt g(x, y)
∣∣ ≤ Ct ·N−1/2 · ||g||3,∞ + Ct ·N−1

(
1 + x2

)
· ||g||2,∞.

Figure 1 shows two simulations of the process Y N with N = 100 and N = 1000.
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Figure 1: Simulation of trajectories of (Y Nt )0≤t≤10 with XN
0 = 0, Y N0 = 0, α1 = α2 = 1,

ν = N (0, 1), f1(x) = f2(x) = 4/(1 + exp(2(1 − x))), N = 100 (left panel) and N = 1000

(right panel). The blue points are the reset jump times of the process Y N .

2 Proof of Theorem 1.5

We prove Theorem 1.5 in three steps. In Section 2.1, we obtain an explicit conver-
gence speed for the convergence of the generators AN of (XN , Y N ) to the generator Ā
of (X̄, Ȳ ) (see Lemma 2.3). Then, we want to use this result using the following formula

P̄tg(x, y)− PNt g(x, y) =

∫ t

0

PNt−s
(
Ā−AN

)
P̄sg(x, y)ds, (2.1)

to deduce the convergence speed for the semigroups PN and P̄ . The problem is that our
bound for the convergence speed of ANg(x, y)− Āg(x, y) depends on the derivatives of
the function g. So we need a control on the derivatives of the limit semigroup (P̄t)t. This
is done at Section 2.2 (Proposition 2.8). Finally, at Section 2.3, we apply the formula (2.1)
to conclude the proof.

2.1 Convergence of the infinitesimal generators

One can note that the processes (X̄, Ȳ ) and (XN , Y N ) (N ∈ N∗) are Markov processes.
In the following, we note P̄ and PN (N ∈ N∗) their respective semigroups, and Ā and AN

(N ∈ N∗) their respective infinitesimal generators. Usually, if Z is a R2−valued Markov
process, we define its semigroup P by: for any t ≥ 0, z ∈ R2, and any continuous and
bounded function g,

Ptg(z) = Ez [g(Zt)] ,

where the index z indicates that we consider the law under which Z0 = z.

The definition of the semigroup of a Markov process coincides in general to the one
above, but the notion of infinitesimal generators can change from a reference to another.
Here we consider a notion of extended generators (similar as the one used in [33, 9]).
If Z is a R2−valued Markov process (whose generator will be denoted by A), we note
D′(A) the set of continuous and bounded functions g for which it exists a function hg
that satisfies, for all z ∈ R2, t ≥ 0,

Ez

∫ t

0

|hg(Zs)|ds <∞ and Ez [g(Zt)]− g(z) = Ez

∫ t

0

hg(Zs)ds.
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If this function hg exists, we note it Ag := hg. Then A is an operator called the (extended)
generator of Z. Note that the expression of a generator does not depend on the different
definitions, what can change from a definition to another is the domain on which the
generator is defined.

Example 2.1. Let X be a Markov process solution to the following one-dimensional SDE

dXt = b(Xt)dt+ σ(Xt)dWt +

∫
R+

Φ(Xt−, u)1{z≤f(Xt−)}dπ(t, z, u),

where W is a standard Brownian motion and π a Poisson measure on R2
+ × R with

intensity dt · dz · dν(u). Then, Ito’s formula allows to prove (provided some sufficient
control on the functions b, σ, f,Φ) that D′(A) contains C2

b (R) and that

Ag(x) = b(x)g′(x) +
1

2
σ(x)2g′′(x) + f(x)

∫
R

[g(x+ Φ(x, u))− g(x)] dν(u).

In this example we consider a one-dimensional SDE to keep things simple, but this
can be generalized to any finite-dimensional SDE.

We refer to Appendix A of [17] for the study of some basic properties of this notion of
generators (in particular for Proposition 5.6 where (2.1) is proved for another model).

Let us give the form of the generators AN and Ā of the processes (XN , Y N ) and
(X̄, Ȳ ). The following lemma is a direct consequence of Ito’s formula and of the form of
the SDEs (1.1) and (1.2).

Lemma 2.2. Grant Assumptions 1.3.(i) − (ii). D′(AN ) contains C1
b (R2), and for g ∈

C1
b (R2) and (x, y) ∈ R2,

ANg(x, y) =− α1x∂1g(x, y)− α2y∂2g(x, y)

+Nf1(x)

∫
R

[
g

(
x+

u√
N
− x

N
, y +

u√
N

)
− g(x, y)

]
dν(u)

+ f2(y) [g(x, 0)− g(x, y)] .

D′(Ā) contains C2
b (R2), and for g ∈ C2

b (R2) and (x, y) ∈ R2,

Āg(x, y) =− α1x∂1g(x, y)− xf1(x)∂1g(x, y)− α2y∂2g(x, y)

+
σ2

2
f1(x)

2∑
i,j=1

∂2
i,jg(x, y) + f2(y) [g(x, 0)− g(x, y)] .

We have the following control on the convergence of the generators.

Lemma 2.3. Grant Assumptions 1.3.(i)− (ii) and Assumption 1.3.(iv). For g ∈ C3
b (R2)

and (x, y) ∈ R2,

∣∣ANg(x, y)− Āg(x, y)
∣∣ ≤ f1(x)

6N1/2

(∫
R

|u|3dν(u)

) ∑
|β|=3

||∂βg||∞ +
1

2
x2f1(x)N−1

∣∣∣∣∂2
11g
∣∣∣∣
∞ .
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Proof. Recalling that ν is a centered probability measure and that σ2 is its variance,

ANg(x, y)− Āg(x, y)

=

∫
R

Nf1(x)

[
g

(
x+

u√
N
− x

N
, y +

u√
N

)
− g(x, y)

]
dν(u)

+ xf1(x)∂1g(x, y)− σ2

2
f1(x)

2∑
i,j=1

∂2
i,jg(x, y)

=Nf1(x)

∫
R

[
g

(
x+

u√
N
− x

N
, y +

u√
N

)
− g(x, y)− u√

N

2∑
i=1

∂ig(x, y) +
x

N
∂1g(x, y)

− u2

2N

2∑
i,j=1

∂2
i,jg(x, y)

 dν(u).

In order to make appear the second-order term of the Taylor polynomial of g(x +

u/
√
N − x/N, y + u/

√
N), let us write

u2

2N

2∑
i,j=1

∂2
i,jg(x, y)

=
1

2

(
u√
N
− x

N

)2

∂2
11g(x, y) +

u2

2N
∂2

22g(x, y) +
u√
N

(
u√
N
− x

N

)
∂2

12g(x, y)

+
ux

N
√
N
∂2

11g(x, y)− x2

2N2
∂2

11g(x, y) +
ux

N
√
N
∂2

12g(x, y).

Therefore, since
∫
R
udν(u) = 0,

ANg(x, y)− Āg(x, y)

=Nf1(x)

∫
R

[
g

(
x+

u√
N
− x

N
, y +

u√
N

)
− g(x, y)− u√

N

2∑
i=1

∂ig(x, y) +
x

N
∂1g(x, y)

−

(
1

2

(
u√
N
− x

N

)2

∂2
11g(x, y) +

u2

2N
∂2

22g(x, y) +
u√
N

(
u√
N
− x

N

)
∂2

12g(x, y)

)]
dν(u)

+
x2

2N
f1(x)∂2

11g(x, y).

As a consequence∣∣ANg(x, y)− Āg(x, y)
∣∣

≤ Nf1(x)

∫
R

[∣∣∣∣g(x+
u√
N
− x

N
, y +

u√
N

)
− g(x, y)

− u√
N

2∑
i=1

∂ig(x, y) +
x

N
f1(x)∂1g(x, y)− 1

2

(
u√
N
− x

N

)2

∂2
11g(x, y)

− u2

2N
∂2

22g(x, y)− u√
N

(
u√
N
− x

N

)
∂2

12g(x, y)

∣∣∣∣] dν(u)

+
x2

2N
f1(x)|∂2

11g(x, y)|.

Then Taylor-Lagrange’s inequality gives the result.
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2.2 Regularity of the limit semigroup and stochastic flow

In this section, we prove the regularity of the semigroup of the limit process (X̄, Ȳ )

w.r.t. its initial condition and a control of its derivatives. However, there are additional
technical difficulties in this proof compared to [17]. We rely on Theorem 1.4.1 of [29]
which guarantees the differentiability of stochastic flows under some conditions. Let us
recall that the stochastic flow of (X̄, Ȳ ) is the family of functions (x, y) 7→ (X̄

(x)
t , Ȳ

(x,y)
t )

(t ≥ 0). A well-known kind of flow is called "Brownian flow". By definition, a Brownian
flow is a stochastic flow that is almost surely continuous w.r.t. the time-parameter t with
independent increments w.r.t. the time-parameter.

The main difficulty is that the trajectories of the process (X̄, Ȳ ) are not continuous.
Hence, the stochastic flow of this process is not a Brownian flow and Theorem 1.4.1 of
[29] cannot be applied. So, we study the stochastic flow between its jump times. Then
we face another difficulty: the jump times of the stochastic flow depends on the initial
condition, and we do not want to study the regularity of this dependency.

This is why we introduce the following auxiliary limit process (X̃, Ỹ ). The only
difference with the limit process (X̄, Ȳ ) is that the stochastic intensity of the jump term
in the SDE of Ỹ is constant. In other words, the occurrences of the jump times of the
process Ỹ are distributed as a homogeneous Poisson process.

X̃t =X̃0 − α1

∫ t

0

X̃sds+ σ

∫ t

0

√
f1(X̃s)dWs −

∫ t

0

X̃sf1(X̃s)ds,

Ỹt =Ỹ0 − α2

∫ t

0

Ỹsds+ σ

∫ t

0

√
f1(X̃s)dWs −

∫
[0,t]×[0,||f2||∞]

Ỹs−dπ̃
1(s, z),

where π̃1 is a Poisson measure on R2
+ with Lebesgue intensity.

Let us note Nt = π̃1([0, t] × ||f2||∞) the number of jumps of the process Ỹ before
time t. By definition of π̃1, (Nt)t≥0 is a homogeneous Poisson process with rate ||f2||∞.
We also note Tn (n ≥ 1) the jump times of the process Ỹ .

The next proposition is a consequence of Girsanov’s theorem for jump processes.
It gives the Radon-Nikodym derivative between the distribution of (X̄t, Ȳt) and that
of (X̃t, Ỹt), for any t ≥ 0. This result is a straightforward application of Theorem V I.T3

of [6] (see also of Theorem 3.5 [31]), its proof is therefore omitted.

Proposition 2.4. Grant Assumptions 1.3.(i)− (ii). Let Nt := π̃1([0, t]× [0, ||f2||∞]) and
Tn (n ∈ N∗) be the jump times of (Nt)t. For all g ∈ Cb(R2), and, x, y ∈ R,

E
[
g
(
X̄

(x)
t , Ȳ

(x,y)
t

)]
= E

g (X̃(x)
t , Ỹ

(x,y)
t

) Nt∏
n=1

f2

(
Ỹ

(x,y)
Tn

)
||f2||∞

exp

[
−
∫ t

0

(
f2

(
Ỹ (x,y)
s

)
− ||f2||∞

)
ds

] .
In order to obtain a control on the regularity of the semigroup P̄ of the limit process

(X̄, Ȳ ), we rely on the previous proposition and on a control of the derivatives of the
stochastic flow of the auxiliary process (X̃, Ỹ ). The next step is to prove this control.

Let us note ϕt(x, y) (t ∈ R+, (x, y) ∈ R2) the stochastic flow related to the following
2−dimensional SDE:

Xt =X0 − α1

∫ t

0

Xsds+ σ

∫ t

0

√
f1(Xs)dWs −

∫ t

0

Xsf1(Xs)ds, (2.2)

Yt =Y0 − α2

∫ t

0

Ysds+ σ

∫ t

0

√
f1(Xs)dWs.
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With our previous notation, it means that ϕt(x, y) := (X
(x)
t , Y

(x,y)
t ), if (X,Y ) is defined

as the solution of the above 2−dimensional SDE. One can note that ϕt(x, y) is the flow
of the process (X̃, Ỹ ) between its jump times. It is clear that ϕt(x, y) is a stochastic
flow by Definition 1.1.1 of [29]. It is even a Brownian flow since the process (X,Y ) has
independent increments and continuous trajectories.

Remark 2.5. Contrarily to the more general framework of [29], the stochastic flow
ϕt(x, y) depends only on one time parameter, because the process is time-homogeneous.

Proposition 2.6. Grant Assumption 1.3.(i) and Assumption 1.3.(iii). Almost surely, for
all t ≥ 0, (x, y) 7→ ϕt(x, y) is a C3−diffeomorphism.

Proof. We rely on Theorem 1.4.1 of [29] and use the notation therein. Let us note (a, b)

the local characteristics of the flow ϕt(x, y). The notion of local characteristics is formally
defined in Assumption 1 of [29, p. 8], and when we study the flow related to an SDE with
a drift term and a Brownian term, the function b can be shown to be the coefficient of
the drift term, and a the matrix of quadratic covariations of the Brownian term. Here
the local characteristics of ϕt(x, y) are given by

b(x, y) =

(
−α1x− xf1(x)

−α2y

)
and a((x, y), (x′, y′)) = σ2

√
f1(x)f1(x′)

(
1 1

1 1

)
.

One can check that the Assumptions 1, 2 and 3 of [29, p. 8, 9, 15] are satisfied.
Indeed, Assumptions 1 and 2 follows easily from the fact that, if (X,Y ) is solution to (2.2),
then

E(x,y)

[
(Xt)

2 + (Yt)
2
]
≤ Ct(1 + x2 + y2),

where the inequality above can be proved with the same reasoning as in the proof of
Lemma 3.2. For Assumption 3, it is sufficient to remark that the functions x 7→ xf1(x)

and x 7→
√
f1(x) are Lipschitz continuous under Assumptions 1.3.(i) and 1.3.(iii).

Then, Theorem 1.4.1 of [29] allows to conclude the proof.

Proposition 2.7. Grant Assumptions 1.3.(i)− (iii). Almost surely, for all t ≥ 0, (x, y) 7→
(X̃

(x)
t , Ỹ

(x,y)
t ) is C3 and, for all even p ∈ N∗, for all multi-index β ∈ N2 such that 1 ≤ |β| ≤

3,

sup
x∈R

E

[
sup

0≤s≤t

(
∂βX̃

(x)
s

)p]
+ sup
x,y∈R

E

[
sup

0≤s≤t

(
∂βỸ

(x,y)
s

)p]
<∞.

Proof. We already know that, for all t ≥ 0, x 7→ X̃
(x)
t is C3 by Proposition 2.6. Indeed, by

definition X̃(x)
t is the first coordinate of ϕt(x, y).

Now, let us recall that Tn (n ∈ N∗) denote the jump times of the process (X̃(x), Ỹ (x,y))

and that these jump times do not depend on the initial condition (x, y). For t < T1,

(X̃
(x)
t , Ỹ

(x,y)
t ) = ϕt(x, y)

is C3 w.r.t. (x, y) by Proposition 2.6. And, for t ∈ [Tn, Tn+1[ (n ∈ N∗),

(X̃
(x)
t , Ỹ

(x,y)
t ) = ϕt−Tn

(X̃
(x)
Tn
, 0),

which is also C3 w.r.t. (x, y) as a composition of the function (x, y) ∈ R2 7→ ϕt−Tn
(x, y)

and the function (x, y) ∈ R2 7→ (X̃
(x)
Tn
, 0). This proves that, almost surely, for all t ≥ 0,

(x, y) 7→ (X̃
(x)
t , Ỹ

(x,y)
t ) is C3. Now, we prove the second part of the statement.

By definition, for all t ≥ 0,

X̃
(x)
t = x− α1

∫ t

0

X̃(x)
s ds−

∫ t

0

X̃(x)
s f1(X̃(x)

s )ds+ σ

∫ t

0

√
f1

(
X̃

(x)
s

)
dWs.
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This implies

∂xX̃
(x)
t =1− α1

∫ t

0

∂xX̃
(x)
s ds−

∫ t

0

X̃(x)
s ∂xX̃

(x)
s f ′1(X̃(x)

s )ds−
∫ t

0

∂xX̃
(x)
s f1(X̃(x)

s )ds

+ σ

∫ t

0

∂xX̃
(x)
s

(√
f1

)′ (
X̃(x)
s

)
dWs.

We also know that

∂xỸ
(x,y)
t = −α2

∫ t

0

∂xỸ
(x,y)
s ds+ σ

∫ t

0

∂xX̃
(x)
s ·

√
f1

(
X̃

(x)
s

)
dWs

−
∫ t

0

∫
[0,||f2||∞]

∂xỸ
(x,y)
s dπ̃(s, z).

Noticing that the initial condition of the process (∂xX̃
(x)
t , ∂xỸ

(x,y)
t ) is (1, 0), Lemma 3.2

allows to prove the result of the lemma for the first order partial derivative w.r.t. x. The
results for the other partial derivatives follow from the same reasoning.

Proposition 2.8. Grant Assumptions 1.3.(i) − (iii). For all t ≥ 0 and g ∈ C3
b (R2), the

function (x, y) ∈ R2 7→ P̄tg(x, y) is C3 and for all multi-index β such that |β| = 3,

sup
0≤s≤t

∣∣∣∣∂βP̄sg∣∣∣∣∞ ≤ Ct||g||3,∞,
where Ct > 0 does not depend on g.

Proof. For the sake of readability, we do not prove the result for the multi-indexes β
such that |β| = 3 but for those such that |β| = 1. This case is easier to prove and the
techniques are exactly the same.

Recalling Proposition 2.4, we have

P̄tg(x, y) = E

g (X̃(x)
t , Ỹ

(x,y)
t

) Nt∏
n=1

f2

(
Ỹ

(x,y)
Tn

)
||f2||∞

exp

[
−
∫ t

0

(
f2

(
Ỹ (x,y)
s

)
− ||f2||∞

)
ds

] .
(2.3)

To prove that the function P̄tg is C1, we rely on Lemma 3.1 which is a generalization
of the classical result about the "differentiation under the integral sign" that uses Vitali
theorem instead of the dominated convergence theorem.

By Proposition 2.7, we know that the expression in the expectation of the right-hand
side of (2.3) is C1 almost surely. In addition, one can control the expectation of the
square of the derivatives of this expression thanks to Proposition 2.7 (see below for
the explicit expression of the derivatives). More precisely, if we note Z(x,y) the random
variable appearing in the expectation of (2.3), then Proposition 2.7 implies that for any
x′, y′ ∈ R,

sup
x∈R

∫
Ω

∣∣∣∂xZ(x,y′)
∣∣∣2 dP(ω) <∞ and sup

y∈R

∫
Ω

∣∣∣∂yZ(x′,y)
∣∣∣2 dP(ω) <∞.

This implies that the uniform integrability condition of Lemma 3.1 is satisfied.
So Lemma 3.1 (applied twice since there are two coordinates) implies that P̄tg is C1.

In addition, denoting by

Lt(x, y) :=

Nt∏
n=1

f2

(
Ỹ

(x,y)
Tn

)
||f2||∞

exp

[
−
∫ t

0

(
f2

(
Ỹ (x,y)
s

)
− ||f2||∞

)
ds

]
,
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we have (thanks to Lemma 3.1)

∂2

(
P̄tg
)

(x, y) = E
[
∂yỸ

(x,y)
t · ∂2g

(
X̃

(x)
t , Ỹ

(x,y)
t

)
Lt(x, y)

]
+ E

g (X̃(x)
t , Ỹ

(x,y)
t

) Nt∑
n=1

∂yỸ
(x,y)
Tn

f ′2

(
Ỹ

(x,y)
Tn

)
||f2||∞

∏
k 6=n

f2

(
Ỹ

(x,y)
Tk

)
||f2||∞

× exp

(∫ t

0

(||f2||∞ − f2(Ỹ (x,y)
s ))ds

)]
− E

[∫ t

0

∂yỸ
(x,y)
s f ′2

(
Ỹ (x,y)
s

)
ds · g

(
X̃

(x)
t , Ỹ

(x,y)
t

)
Lt(x, y)

]
.

As a consequence,∣∣∂2

(
P̄tg
)

(x, y)
∣∣ ≤||∂2g||∞et||f2||∞E

[∣∣∣∂yỸ (x,y)
t

∣∣∣]
+ ||g||∞

||f ′2||∞
||f2||∞

e||f2||∞tE

[
Nt sup

0≤s≤t

∣∣∣∂yỸ (x,y)
s

∣∣∣]
+ ||f ′2||∞ · ||g||∞et||f2||∞tE

[
sup

0≤s≤t

∣∣∣∂yỸ (x,y)
s

∣∣∣] .
The expressions of the first line and the third line above can be bounded uniformly

in (x, y) thanks to Proposition 2.7. For the expression of the second line, we can use
Cauchy-Schwarz’s inequality for example (we can recall that Nt follows the Poisson
distribution with parameter t||f2||∞).

This implies that

sup
x,y∈R

sup
0≤s≤t

∣∣∂2

(
P̄sg
)

(x, y)
∣∣ ≤ Ct||g||1,∞.

With similar computation, we can prove that

sup
x,y∈R

sup
0≤s≤t

∣∣∂1

(
P̄sg
)

(x, y)
∣∣ ≤ Ct||g||1,∞.

So we have proved the result for the two multi-indexes β such that |β| = 1. Note
that in the case for the multi-indexes β such that |β| = 3, we would need a control on
higher moments of the processes X̃, Ỹ and their derivatives to control expectations of
product of these processes. Indeed, the partial derivative w.r.t. the multi-index (1, 2)

would involve terms as

E

[(
sup

0≤s≤t
|∂xỸ (x,y)

s |
)(

sup
0≤s≤t

|∂yỸ (x,y)
s |

)2
]

which can be controlled using Cauchy-Schwarz’s inequality, recalling that Proposition 2.7
allows to bound every polynomial moment of the partial derivatives of the process (X̃, Ỹ )

w.r.t. its initial condition.

2.3 End of the proof of Theorem 1.5

With a similar proof to the one of Proposition 5.6 of [17], we can prove that, for all
t ≥ 0, N ∈ N∗, g ∈ C3

b (R2), x, y ∈ R,

(
P̄t − PNt

)
g(x, y) =

∫ t

0

PNt−s
(
Ā−AN

)
P̄sg(x, y)ds.
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Consequently,∣∣(P̄t − PNt ) g(x, y)
∣∣ ≤ ∫ t

0

E(x,y)

[∣∣(Ā−AN) P̄sg(XN
t−s, Y

N
t−s)

∣∣] ds
≤C ·N−1/2

∫ t

0

E(x,y)

f1(XN
t−s)

∑
|β|=3

||∂β
(
P̄sg
)
||∞

 ds
+ CN−1

∫ t

0

E(x,y)

[(
XN
t−s
)2
f1

(
XN
t−s
)
||∂2

11(P̄sg)||∞
]
ds

≤Ct ·N−1/2 · ||f1||∞||g||3,∞ + Ct ·N−1 · ||f1||∞
(
1 + x2

)
||g||2,∞,

where we have used Lemma 2.3 to obtain the second inequality above, and Proposi-
tion 2.8 and Lemma 3.4 to obtain the last one. More precisely, Proposition 2.8 is used to
control the partial derivatives of the function P̄sg, and Lemma 3.4 to control the second
order moment of XN

t−s.

3 Technical lemmas

The first lemma allows to differentiate under an integral sign. Contrary to the
classical result that relies on the dominated convergence theorem, this result relies on
Vitali convergence theorem. This result is a direct consequence of Lemma 6.1 of [12].

Lemma 3.1. Let F : (x, ω) ∈ R × Ω 7→ R be a measurable function, where (Ω,P) is a
probability space. Assume that:

• P−almost surely, x 7→ F (x, ω) is C1,
• the set of functions {ω 7→ ∂1F (x, ω) : x ∈ R} is uniformly integrable.

Then, P−almost surely, x 7→
∫

Ω
F (x, ω)dP(ω) is C1 and its derivative is∫
Ω

∂1F (x, ω)dP(ω).

Proof. By Lemma 6.1 of [12], for any T > 0, the function x 7→
∫

Ω
F (x, ω)dP(ω) is almost

surely C1 on [−T, T ] with derivative∫
Ω

∂1F (x, ω)dP(ω).

As it holds true for any T > 0, the result is proved.

The next lemma allows to obtain a priori estimates on solutions of certain SDEs
(in our model, it is used to control the polynomial moments of the derivatives of the
limit process in Proposition 2.7). This result is not written to be general, because some
specific properties of our SDEs allow some simplifications to obtain the result.

Lemma 3.2. Let (Xt, Yt)t be a solution of the following two-dimensional SDE

dXt =b1(Xt, Yt)dt+ ς1(Xt, Yt)dWt,

dYt =b2(Xt, Yt)dt+ ς2(Xt, Yt)dWt −
∫

[0,+∞[

Yt−1{z≤f(Yt−)}dπ(z, t),

where (Wt)t is one-dimensional standard Brownian motion, π a Poisson measure on R2
+

with Lebesgue intensity and f a non-negative measurable function. Assume that the
functions b1, b2, ς1 and ς2 are sublinear: for all x, y ∈ R,

|b1(x, y)|+ |b2(x, y)|+ |ς1(x, y)|+ |ς2(x, y)| ≤ C(1 + |x|+ |y|).

Then:
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(i) for any even p ∈ N such that X0 and Y0 both have a finite p−order moment, for all
t ≥ 0,

E [Xp
t ] + E [Y pt ] ≤ Ct,p(1 + E [Xp

0 ] + E [Y p0 ]),

with Ct,p > 0 some constant,

(ii) if X0 and Y0 both have a finite 2p−th order moment (for some even p ∈ N∗), for all
t ≥ 0,

E

[
sup

0≤s≤t
Xp
s

]
+ E

[
sup

0≤s≤t
Y ps

]
≤ Ct,p

(
1 + E

[
X2p

0

]
+ E

[
Y 2p

0

])
,

with Ct,p > 0 another constant.

Proof. Step 1. Let us prove the point (i). By Ito’s formula, for all t ≥ 0,

Xp
t =Xp

0 + p

∫ t

0

Xp−1
s b1(Xs, Ys)ds+

p(p− 1)

2

∫ t

0

Xp−2
s ς1(Xs, Ys)

2ds

+ p

∫ t

0

Xp−1
s ς1(Xs, Ys)dWs, (3.1)

Y pt =Y p0 + p

∫ t

0

Y p−1
s b2(Xs, Ys)ds+

p(p− 1)

2

∫ t

0

Y p−2
s ς2(Xs, Ys)

2ds

+ p

∫ t

0

Y p−1
s ς2(Xs, Ys)dWs −

∫
[0,t]×[0,+∞[

Y ps−1{z≤f(Ys−)}dπ(s, z)

≤Y p0 + p

∫ t

0

Y p−1
s b2(Xs, Ys)ds+

p(p− 1)

2

∫ t

0

Y p−2
s ς2(Xs, Ys)

2ds

+ p

∫ t

0

Y p−1
s ς2(Xs, Ys)dWs. (3.2)

Now for M > 0, let us introduce the following stopping time

τM := inf{t > 0 : |Xt| > M or |Yt| > M},

and the function

uM,p(t) := E [(Xt∧τM )p + (Yt∧τM )p] .

Thanks to (3.1), we have for all t ≥ 0,

E [(Xt∧τM )p] = E [Xp
0 ] + E

[∫ t∧τM

0

(
pXp−1

s b1(Xs, Ys) +
p(p− 1)

2
Xp−2
s ς1(Xs, Ys)

2

)
ds

]
≤ E [Xp

0 ] + C

∫ t

0

E
[
|Xs∧τM |p−1 · |b1(Xs∧τM , Ys∧τM )|+Xp−2

s∧τM ς1(Xs∧τM , Ys∧τM )2
]
ds

≤ E [Xp
0 ] + C

∫ t

0

(1 + uM,p(s)) ds,

where we have used the sublinearity of the functions b1 and ς1 to obtain the last line.
With the same reasoning, we also have using (3.2) for all t ≥ 0,

E [(Yt∧τM )p] ≤ E [Y p0 ] + C

∫ t

0

(1 + uM,p(s)) ds.

So, for all t ≥ 0,

uM,p(t) ≤ E [Xp
0 ] + E [Y p0 ] + Ct+ C

∫ t

0

uM,p(s)ds.
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Then, as the function uM,p is locally integrable (thanks to the stopping time τM ),
Grönwall’s lemma implies that for all t ≥ 0,

uM,p(t) ≤ (E [Xp
0 ] + E [Y p0 ] + Ct) eCt ≤ Ct(1 + E [Xp

0 ] + E [Y p0 ]), (3.3)

where Ct > 0 does not depend on M.

Now let us prove that τM goes to infinity almost surely as M goes to infinity. Firstly,
as (τM )M is non-decreasing w.r.t. M , we know that τM has an almost sure limit τ as M
goes to infinity. We have, for all t > 0, by Markov’s inequality and thanks to (3.3),

P (τM ≤ t) ≤ P
(
Xp
t∧τM + Y pt∧τM ≥M

p
)
≤ 1

Mp
uM,p(t) −→

M→∞
0.

Consequently, for all t > 0,

P (τ ≤ t) ≤ P

( ⋂
M∈N∗

{τM ≤ t}

)
= lim
M→∞

P (τM ≤ t) = 0.

Hence,

P (τ <∞) ≤ P

( ⋃
t∈N∗
{τ ≤ t}

)
= 0.

This means that τM goes to infinity almost surely as M goes to infinity.
Finally, applying Fatou’s lemma to (3.3) gives that for all t ≥ 0,

E [Xp
t + Y pt ] ≤ Ct(1 + E [Xp

0 ] + E [Y p0 ]).

Step 2. Let us prove the point (ii). By (3.1) and Burkhölder-Davis-Gundy’s inequality,

E

[
sup

0≤s≤t
Xp
s

]
≤ E [X0]

p
+ p

∫ t

0

E
[
|Xp−1

s b1(Xs, Ys)|
]
ds

+
p(p− 1)

2

∫ t

0

E
[
Xp−2
s ς1(Xs, Ys)

2
]
ds+ Cp

(∫ t

0

E
[
X2p−2
s ς1(Xs, Ys)

2
]
ds

)1/2

≤ E
[
X2

0

]
+ C

∫ t

0

(1 + E [Xp
s ] + E [Y ps ]) ds

+ C

(∫ t

0

(
1 + E

[
X2p
s

]
+ E

[
Y 2p
s

])
ds

)1/2

≤ E [Xp
0 ] + C

∫ t

0

(
1 + E

[
X2p
s

]
+ E

[
Y 2p
s

])
ds

≤ Ct
(

1 + E
[
X2p

0

]
+ E

[
Y 2p

0

])
.

The result for the process Y follows from the same computation using (3.2) instead
of (3.1).

Remark 3.3. In the proof of Lemma 3.2, we use the stopping times τM to guarantee the
function uM,p to be locally integrable. Otherwise we would not have the right to apply
Grönwall’s lemma.

The following lemma is similar to the previous one: it allows to control the moments of
the process (XN , Y N ) instead of the moments of the limit process (X̄, Ȳ ). An important
point of the lemma is that, the desired estimates are uniform in N (provided that the
initial conditions (XN

0 , Y
N
0 ) admit finite moments uniformly bounded in N ). This lemma

is used in the proof of Theorem 1.5 at Section 2.3. In the proof of Lemma 3.4 below,
we do not introduce the stopping times τM as in the proof of Lemma 3.2 for the sake of
readability.
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Lemma 3.4. Grant Assumption 1.3.(i) and Assumption 1.3.(iv). Let XN be the solution
of the first equation of (1.1). Assume that each XN

0 has a finite second order moment.
Then, for any N ∈ N∗ and t ≥ 0,

sup
s≤t

E
[(
XN
s

)2] ≤ Ct (1 + E
[
(XN

0 )2
])
,

where Ct > 0 does not depend on N.

Proof. By Ito’s formula,

(XN
t )2 =(XN

0 )2 − 2α1

∫ t

0

(XN
s )2ds

+

N∑
j=1

∫
[0,t]×R+×R

[(
XN
s− +

u√
N
−
XN
s−
N

)2

− (XN
s−)2

]
1{z≤f1(XN

s−)}dπ
(1),j(s, z, u)

≤(XN
0 )2

+

N∑
j=1

∫
[0,t]×R+×R

[(
XN
s− +

u√
N
−
XN
s−
N

)2

− (XN
s−)2

]
1{z≤f1(XN

s−)}dπ
(1),j(s, z, u)

≤(XN
0 )2 +

N∑
j=1

∫
[0,t]×R+×R

[
2

(
u√
N
−
XN
s−
N

)
XN
s− +

(
u√
N
−
XN
s−
N

)2
]

× 1{z≤f1(XN
s−)}dπ

(1),j(s, z, u).

Taking expectation, we obtain

E
[
(XN

t )2
]
≤E

[
(XN

0 )2
]

+N ||f1||∞
∫ t

0

∫
R

E

[
2

(
u√
N
− XN

s

N

)
XN
s +

(
u√
N
− XN

s

N

)2
]
dν(u)ds.

Now let us expand the term within the expectation

2

(
u√
N
− XN

s

N

)
XN
s +

(
u√
N
− XN

s

N

)2

= 2
u√
N
XN
s − 2

(XN
s )2

N
+
u2

N
+

(XN
s )2

N2
− 2

uXN
s

N
√
N
.

Recalling that
∫
udν(u) = 0 and that σ2 :=

∫
u2dν(u), we have

∫
R

E

[
2

(
u√
N
− XN

s

N

)
XN
s +

(
u√
N
− XN

s

N

)2
]
dν(u)

= − 2

N
E
[
(XN

s )2
]

+
σ2

N
+

1

N2
E
[
(XN

s )2
]
≤ σ2

N
+

1

N2
E
[
(XN

s )2
]
.

Consequently,

E
[
(XN

t )2
]
≤ E

[
(XN

0 )2
]

+ σ2||f1||∞t+
1

N

∫ t

0

E
[
(XN

s )2
]
ds.

And Grönwall’s lemma implies that

E
[
(XN

t )2
]
≤
(
E
[
(XN

0 )2
]

+ σ2||f1||∞t
)
et/N ≤

(
E
[
(XN

0 )2
]

+ σ2||f1||∞t
)
et,

which proves the result.
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