Volume 2

1. Analysis of Activity Dependent Development of Topographic Maps in Neural Field Theory with Short Time Scale Dependent Plasticity

Nicholas Gale ; Jennifer Rodger ; Michael Small ; Stephen Eglen.
Topographic maps are a brain structure connecting pre-synpatic and post-synaptic brain regions. Topographic development is dependent on Hebbian-based plasticity mechanisms working in conjunction with spontaneous patterns of neural activity generated in the pre-synaptic regions. Studies performed in mouse have shown that these spontaneous patterns can exhibit complex spatial-temporal structures which existing models cannot incorporate. Neural field theories are appropriate modelling paradigms for topographic systems due to the dense nature of the connections between regions and can be augmented with a plasticity rule general enough to capture complex time-varying structures. We propose a theoretical framework for studying the development of topography in the context of complex spatial-temporal activity fed-forward from the pre-synaptic to post-synaptic regions. Analysis of the model leads to an analytic solution corroborating the conclusion that activity can drive the refinement of topographic projections. The analysis also suggests that biological noise is used in the development of topography to stabilise the dynamics. MCMC simulations are used to analyse and understand the differences in topographic refinement between wild-type and the $\beta2$ knock-out mutant in mice. The time scale of the synaptic plasticity window is estimated as $0.56$ seconds in this context with a model fit of $R^2 = 0.81$.

2. Neural Field Models: A mathematical overview and unifying framework

Blake J. Cook ; Andre D. H. Peterson ; Wessel Woldman ; John R. Terry.
Mathematical modelling of the macroscopic electrical activity of the brain is highly non-trivial and requires a detailed understanding of not only the associated mathematical techniques, but also the underlying physiology and anatomy. Neural field theory is a population-level approach to modelling the non-linear dynamics of large populations of neurons, while maintaining a degree of mathematical tractability. This class of models provides a solid theoretical perspective on fundamental processes of neural tissue such as state transitions between different brain activities as observed during epilepsy or sleep. Various anatomical, physiological, and mathematical assumptions are essential for deriving a minimal set of equations that strike a balance between biophysical realism and mathematical tractability. However, these assumptions are not always made explicit throughout the literature. Even though neural field models (NFMs) first appeared in the literature in the early 1970's, the relationships between them have not been systematically addressed. This may partially be explained by the fact that the inter-dependencies between these models are often implicit and non-trivial. Herein we provide a review of key stages of the history and development of neural field theory and contemporary uses of this branch of mathematical neuroscience. First, the principles of the theory are summarised throughout a discussion of the pioneering models by Wilson and Cowan, Amari and Nunez. Upon […]